Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải phương trình \({\rm{2sin}}x\left( {{\rm{1}} + {\rm{cos2}}x} \right) + \sin 2x = {\rm{1}} + {\rm{2}}\cos

Câu hỏi số 378092:
Vận dụng

Giải phương trình \({\rm{2sin}}x\left( {{\rm{1}} + {\rm{cos2}}x} \right) + \sin 2x = {\rm{1}} + {\rm{2}}\cos x\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:378092
Giải chi tiết

\(\begin{array}{l}\,\,\,\,\,\,\,{\rm{2sin}}x\left( {{\rm{1}} + {\rm{cos2}}x} \right) + \sin 2x = {\rm{1}} + {\rm{2}}\cos x\\ \Leftrightarrow 2\sin x.2{\cos ^2}x + \sin 2x - 1 - 2\cos x = 0\\ \Leftrightarrow 2\sin 2x.\cos x + \sin 2x - \left( {1 + 2\cos x} \right) = 0\\ \Leftrightarrow \sin 2x\left( {2\cos x + 1} \right) - \left( {1 + 2\cos x} \right) = 0\\ \Leftrightarrow \left( {\sin 2x - 1} \right)\left( {2\cos x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = \frac{{ - 1}}{2}\\\sin 2x = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  \pm \frac{{2\pi }}{3} + k\pi \\x = \frac{\pi }{4} + k\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy \(S = \left\{ { \pm \frac{{2\pi }}{3} + k2\pi ,\,\,\frac{\pi }{4} + k\pi ,\,\,k \in \mathbb{Z}} \right\}\).

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com