Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải phương trình : \({\sin ^2}x + 2\sqrt 3 \sin x\cos x - {\cos ^2}x =  - 2\).

Câu hỏi số 379856:
Vận dụng

Giải phương trình : \({\sin ^2}x + 2\sqrt 3 \sin x\cos x - {\cos ^2}x =  - 2\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:379856
Phương pháp giải

– Xét  thay vào phương trình và kiểm tra.

- Xét \(\cos x \ne 0\) và chia cả hai vế của phương trình cho \({\cos ^2}x \ne 0\) đưa về phương trình bậc hai ẩn \(\tan x\).

- Giải phương trình và kết luận nghiệm.

Giải chi tiết

+) Xét \(\cos x = 0 \Leftrightarrow x = \dfrac{\pi }{2} + k\pi \). Khi đó \({\sin ^2}x = 1 - {\cos ^2}x = 1\), thay vào phương trình ta được :

\(1 + 0 - 0 =  - 2 \Leftrightarrow 1 =  - 2\) (vô lí)

Suy ra \(x = \dfrac{\pi }{2} + k\pi ;\,\,k \in \mathbb{Z}\) không phải là nghiệm.

+) Xét \(\cos x \ne 0 \Leftrightarrow x \ne \dfrac{\pi }{2} + k\pi ;\,\,k \in \mathbb{Z}\), chia hai vế của phương trình cho \({\cos ^2}x \ne 0\) ta được :

\(\begin{array}{l}\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + \dfrac{{2\sqrt 3 \sin x\cos x}}{{{{\cos }^2}x}} - \dfrac{{{{\cos }^2}x}}{{{{\cos }^2}x}} =  - \dfrac{2}{{{{\cos }^2}x}}\\ \Leftrightarrow {\tan ^2}x + 2\sqrt 3 \tan x - 1 =  - 2\left( {1 + {{\tan }^2}x} \right)\end{array}\)

\( \Leftrightarrow 3{\tan ^2}x + 2\sqrt 3 \tan x + 1 = 0\) \( \Leftrightarrow \tan x =  - \dfrac{{\sqrt 3 }}{3}\)\( \Leftrightarrow x = \dfrac{{ - \pi }}{6} + k\pi ,\,\,k \in \mathbb{Z}\).

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com