Cho nửa đường tròn tâm \(O\), đường kính \(AB = 2R\). Trên nửa mặt phẳng có bờ là \(AB\) chứa
Cho nửa đường tròn tâm \(O\), đường kính \(AB = 2R\). Trên nửa mặt phẳng có bờ là \(AB\) chứa nửa đường tròn, vẽ tiếp tuyến \(Ax,\,\,By\). Từ điểm \(M\) tùy ý thuộc nửa đường tròn (\(M\)khác \(A,B\)) vẽ tiếp tuyến tại \(M\) cắt \(Ax,\,\,By\) lần lượt tại \(C,\,\,D\). Gọi \(E\) là giao điểm của \(CO\) và \(AM\), \(F\)là giao điểm của \(DO\) và \(BM\).
a) Chứng minh \(4\)điểm \(A,C,M,O\) cùng thuộc một đường tròn.
b) Chứng minh \(AC + BD = CD\) và tứ giác \(MEOF\) là hình chữ nhật.
c) Chứng minh tích \(AC.BD\) không đổi khi \(M\) di động trên nửa đường tròn.
d) Tìm vị trí của \(M\) trên nửa đường tròn sao cho diện tích tứ giác \(ABDC\) nhỏ nhất.
Quảng cáo
a) Tam giác vuông nội tiếp đường tròn có đường kính là cạnh huyền của nó
b) Sử dụng tính chất hai tiếp tuyến cắt nhau và dấu hiệu : Tứ giác có ba góc vuông là hình chữ nhật
Chú ý : Tam giác nội tiếp đường tròn mà có 1 cạnh là đường kính của đường tròn thì tam giác đó là tam giác vuông.
c) Sử dụng hệ thức lượng trong tam giác vuông
d) Sử dụng kết quả câu b) câu c) và bất đẳng thức Cô-si cho hai số \(a,b\) không âm : \(a + b \ge 2\sqrt {ab} \)
Dấu = xảy ra \( \Leftrightarrow a = b.\)
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










