Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình nón có chiều cao bằng 4 và bán kính đáy bằng 3. Cắt hình nón đã cho bởi mặt phẳng

Câu hỏi số 381288:
Vận dụng

Cho hình nón có chiều cao bằng 4 và bán kính đáy bằng 3. Cắt hình nón đã cho bởi mặt phẳng đi qua đỉnh và cách tâm của đáy một khoảng bằng 2, ta được thiết diện có diện tích bằng

Đáp án đúng là: D

Quảng cáo

Câu hỏi:381288
Phương pháp giải

Khi cắt hình nón bởi một mặt phẳng đi qua đỉnh và cách tâm của đáy một khoảng bằng 2 ta được một tam giác cân.

Tính chiều cao và độ dài đáy của thiết diện để tính diện tích của thiết diện đó.

Giải chi tiết

Gọi \(S\) là đỉnh, \(I\) là tâm đường tròn đáy của hình nón đã cho.

Mặt phẳng đi qua đỉnh của hình nón và cách tâm của đáy một khoảng bằng 2 cắt đường tròn đáy theo dây cung \(AB\)

Gọi \(M\) là trung điểm của \(AB\). Qua \(I\) kẻ \(IH \bot SM\left( {H \in SM} \right)\).

Ta có:

\(IA = IB = 3\) nên tam giác \(IAB\) cân tại \(I\) hay \(IM \bot AB\)     (1)

\(SI \bot \left( {IAB} \right) \Rightarrow SI \bot AB\)      (2)

Từ (1) và (2) suy ra \(AB \bot \left( {SIM} \right) \Rightarrow AB \bot IH\) mà \(IH \bot SM\) nên \(IH \bot \left( {SAB} \right)\)

Khoảng cách từ tâm đến mp \(\left( {SAB} \right)\) bằng 2 nên \(IH = 2\)

Tam giác \(SIM\) vuông tại \(I,\) có đường cao \(IH\) nên:

\(\dfrac{1}{{I{H^2}}} = \dfrac{1}{{S{I^2}}} + \dfrac{1}{{I{M^2}}} \Leftrightarrow \dfrac{1}{{{2^2}}} = \dfrac{1}{{{4^2}}} + \dfrac{1}{{I{M^2}}} \Rightarrow IM = \dfrac{{4\sqrt 3 }}{3}\)

\(S{M^2} = S{I^2} + I{M^2} = {4^2} + {\left( {\dfrac{{4\sqrt 3 }}{3}} \right)^2} \Rightarrow SM = \dfrac{{8\sqrt 3 }}{3}\)

Tam giác \(IAM\) vuông tại \(M\) nên \(AM = \sqrt {I{A^2} - I{M^2}}  = \dfrac{{\sqrt {33} }}{3} \Rightarrow AB = \dfrac{{2\sqrt {33} }}{3}\)

Tam giác \(SAB\) có \(SM \bot AB\) nên diên tích tam giác \(SAB\) là:      

\({S_{\Delta SAB}} = \dfrac{1}{2}SM.AB = \dfrac{1}{2}.\dfrac{{8\sqrt 3 }}{3}.\dfrac{{2\sqrt {33} }}{3} = \dfrac{{8\sqrt {11} }}{3}\)

Vậy diện tích thiết diện bằng \(\dfrac{{8\sqrt {11} }}{3}\) (đvdt)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com