Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị là đường cong trong hình dưới đây. Khẳng

Câu hỏi số 381289:
Thông hiểu

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị là đường cong trong hình dưới đây. Khẳng định nào sau đây đúng?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:381289
Phương pháp giải

Từ đồ thị hàm số đã cho, xác định các điểm cực đại, cực tiểu, giới hạn của hàm số khi \(x \to  \pm \infty \), điểm cắt với trục tung để xác định dấu của các hệ số \(a,c,d\)

Giải chi tiết

Từ đồ thị hàm số đã cho ta thấy:

Đồ thị hàm số đã cho cắt trục tung tại điểm có tung độ dương nên \(d > 0\)

\(\mathop {\lim }\limits_{x \to  - \infty }  =  + \infty ;\mathop {\lim }\limits_{x \to  + \infty }  =  - \infty \) nên \(a < 0\)

Ta có:

\(\begin{array}{l}y = a{x^3} + b{x^2} + cx + d\\ \Rightarrow y' = 3a{x^2} + 2bx + c\end{array}\)

Hàm số đã cho có 2 điểm cực trị \({x_1},{x_2}\)  đều lớn hơn 0 nên ta có:   \(\left\{ \begin{array}{l}{x_1} + {x_2} > 0\\{x_1}.{x_2} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{ - 2b}}{{3a}} > 0\\\dfrac{c}{{3a}} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a < 0\\b > 0\\c < 0\end{array} \right.\)

Vậy \(a < 0,b > 0,c < 0,d > 0\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com