Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Cạnh bên \(SA = a\sqrt 6 \) và vuông góc

Câu hỏi số 381297:
Vận dụng

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Cạnh bên \(SA = a\sqrt 6 \) và vuông góc với đáy \(\left( {ABCD} \right)\). Tính theo \(a\) diện tích mặt cầu ngoại tiếp khối chóp \(S.ABCD\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:381297
Phương pháp giải

Tìm tâm mặt cầu ngoại tiếp khối chóp như sau:

Tìm tâm đường tròn ngoại tiếp đa giác đáy. Qua tâm đường tròn đó, kẻ đường thẳng \(d\) vuông góc với mặt đáy cắt mặt phẳng trung trực của một cạnh bên bất kì tại \(I\). Khi đó, \(I\) chình là tâm mặt cầu ngoại tiếp khối chóp đã cho.

Tính bán kính \(R\) của khối chóp.

Diện tích mặt cầu có bán kính bằng \(R\) là \(S = 4\pi {R^2}\)

Giải chi tiết

Gọi \(O\) là giao điểm của \(AC\) và \(BD\), \(I\) là trung điểm của \(SC\).

\(ABCD\) là hình vuông nên \(O\) là tâm đường tròn ngoại  tiếp hình vuông \(ABCD\) và \(O\) là trung điểm \(AC\) và \(BD.\)

\(OI\) là đường trung bình trong tam giác \(SAC\) nên \(OI//SA\) mà \(SA \bot \left( {ABCD} \right)\) nên \(OI \bot \left( {ABCD} \right)\)

\(I\) nằm trên đường thẳng qua tâm \(O\) và vuông góc với mặt phẳng \(\left( {ABCD} \right)\) nên \(IA = IB = IC = ID\)

Mặt khác tam giác \(SAC\) vuông tại \(A\) có trung tuyến \(AI\) nên  \(IA = \dfrac{1}{2}SC = SI = IC\)

Suy ra \(IS = IA = IB = IC = ID\) hay \(I\) là tâm mặt cầu ngoại tiếp khối chóp.

Ta có:

\(ABCD\) là hình vuông nên \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{a^2} + {a^2}}  = \sqrt 2 a\)

Tam giác \(SAC\) vuông tại \(A\) nên \(SC = \sqrt {S{A^2} + A{C^2}}  = \sqrt {6{a^2} + 2{a^2}}  = 2\sqrt 2 a\)

\( \Rightarrow R = \dfrac{1}{2}SC = \sqrt 2 a\)

Diện tích của mặt cầu ngoại tiếp khối chóp là \(S = 4\pi {R^2} = 4\pi .{\left( {\sqrt 2 a} \right)^2} = 8\pi {a^2}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com