Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a,\)\(AD = 2a,\)\(AA' = 3a\). Thể tích khối nón có

Câu hỏi số 381299:
Vận dụng

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a,\)\(AD = 2a,\)\(AA' = 3a\). Thể tích khối nón có đỉnh trùng với tâm của hình chữ nhật \(ABCD\), đường tròn đáy ngoại tiếp hình chữ nhật \(A'B'C'D'\) là

Đáp án đúng là: B

Quảng cáo

Câu hỏi:381299
Phương pháp giải

Tính chiều cao \(h\) và bán kính đáy \(r\) của khối nón.

Thể tích của khối nón được tính bằng công thức: \(V = \dfrac{1}{3}\pi h{r^2}\)

Giải chi tiết

Gọi \(O\) là giao điểm của \(AC\) và \(BD\), \(O'\) là giao điểm của \(A'C'\) và \(B'D'\).

Khối nón đã cho có đỉnh là \(O\), đường tròn đáy là đường tròn tâm \(O'\) ngoại tiếp hình chữ nhật \(A'B'C'D'\).

Do đó khối nón trên có chiều cao là \(h = OO' = AA' = 3a\) và bán kính đường tròn đáy là

\(r = O'A' = \dfrac{1}{2}A'C' = \dfrac{1}{2}\sqrt {A'B{'^2} + B'C{'^2}} \)  \( = \dfrac{1}{2}\sqrt {{a^2} + {{\left( {2a} \right)}^2}}  = \dfrac{{\sqrt 5 }}{2}a\)

Vậy thể tích của khối nón đã cho là  \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}.\pi .{\left( {\dfrac{{\sqrt 5 }}{2}a} \right)^2}.3a = \dfrac{{5\pi {a^3}}}{4}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com