Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là \(\Delta ABC\) với \(AB = 2a,AC = a,\widehat {BAC} = 120^\circ

Câu hỏi số 381312:
Vận dụng

Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là \(\Delta ABC\) với \(AB = 2a,AC = a,\widehat {BAC} = 120^\circ \). Góc giữa \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \(45^\circ \). Tính thể tích của khối lăng trụ \(ABC.A'B'C'\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:381312
Phương pháp giải

Tìm góc tạo bởi 2 mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) để tìm độ dài đường cao \(AA'\)

Thể tích của khối lăng trụ đứng \(ABC.A'B'C'\) là       \(V = AA'.{S_{ABC}}\)

Giải chi tiết

Qua \(A\) kẻ \(AH \bot BC\left( {H \in BC} \right)\)      (1)

\(ABC.A'B'C'\) là lăng trụ đứng nên \(AA' \bot \left( {ABC} \right) \Leftrightarrow AA' \bot BC\)    (2)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra   \(BC \bot \left( {AHA'} \right) \Rightarrow BC \bot A'H\)

Ta có :

\(\left\{ \begin{array}{l}\left( {ABC} \right) \cap \left( {A'BC} \right) = BC\\A'H \bot BC,AH \bot BC\\A'H \subset \left( {A'BC} \right),AH \subset \left( {ABC} \right)\end{array} \right.\)\( \Rightarrow \widehat {\left( {A'BC} \right),\left( {ABC} \right)}\)\( = \widehat {A'H,AH} = \widehat {A'HA} = 45^\circ \)

Do đó tam giác \(A'HA\) vuông cân tại \(A\)

Tam giác \(ABC\) có \(AB = 2a,AC = a,\widehat {BAC} = 120^\circ \) nên ta có :

\(BC = \sqrt {A{B^2} + A{C^2} - 2\cos BAC.AB.AC}  = \sqrt 7 a\)

\({S_{\Delta ABC}} = \dfrac{1}{2}AB.AC.\sin BAC = \dfrac{{\sqrt 3 }}{2}{a^2}\)

   Do đó \(AH = \dfrac{{2{S_{ABC}}}}{{BC}} = \dfrac{{\sqrt {21} }}{7}\)

Tam giác \(AHA'\) vuông cân tại \(A\) nên \(AA' = AH = \dfrac{{\sqrt {21} a}}{7}\)

Do đó, thể tích của khối lăng trụ \(ABC.A'B'C'\) là  \(V = AA'.{S_{ABC}} = \dfrac{{\sqrt {21} }}{7}a.\dfrac{{\sqrt 3 }}{2}{a^2} = \dfrac{{3\sqrt 7 }}{{14}}{a^3}\)   

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com