Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc TN THPT và ĐGNL HCM - Ngày 07-08/02/2026
↪ TN THPT - Trạm 3 ↪ ĐGNL HCM
Giỏ hàng của tôi

Cho \(\Delta ABC\), \(E\) là trung điểm của \(BC\). Lấy \(D\) thuộc tia đối của tia \(EA\) sao cho \(ED

Câu hỏi số 383397:
Vận dụng

Cho \(\Delta ABC\), \(E\) là trung điểm của \(BC\). Lấy \(D\) thuộc tia đối của tia \(EA\) sao cho \(ED = EA\).

a) Chứng minh rằng: \(\Delta AEB = \Delta DEC\).

b) Chứng minh rằng: \(AC//BD\).

c) Kẻ \(EI \bot AC\,\,\left( {I \in AC} \right);\) \(EK \bot BD\,\,\left( {K \in BD} \right)\). Chứng minh \(\Delta AIE = \Delta DKE\).

d) Chứng minh \(3\) điểm \(I,E,K\) thẳng hàng.

Quảng cáo

Câu hỏi:383397
Phương pháp giải

- Áp dụng các trường hợp bằng nhau của tam giác và các tính chất của hai tam giác bằng nhau.

Giải chi tiết

a) Chứng minh rằng: \(\Delta AEB = \Delta DEC\).

Xét hai tam giác \(AEB\) và \(DEC\) có:

\(BE = EC\,\,\left( {gt} \right)\)

\(\widehat {AEB} = \widehat {DEC}\) (2 góc đối đỉnh)

\(EA = ED\,\,(gt)\)

Vậy \(\Delta AEB = \Delta DEC\,\,\left( {c.g.c} \right)\)

b) Chứng minh rằng: \(AC//BD\).

Xét hai tam giác \(AEC\) và \(DEB\) có:

\(BE = EC\,\,\left( {gt} \right)\)

\(\widehat {AEC} = \widehat {DEB}\) (2 góc đối đỉnh)

\(EA = ED\,\,(gt)\)

Vậy \(\Delta AEC = \Delta DEB\,\,\left( {c.g.c} \right)\)

\( \Rightarrow \widehat {CAE} = \widehat {BDE}\) (2 góc tương ứng)

Mà hai góc \(CAE\) và góc \(BDE\) là hai góc so le trong, suy ra \(AC//BD\).

c) Kẻ \(EI \bot AC\,\,\left( {I \in AC} \right);\) \(EK \bot BD\,\,\left( {K \in BD} \right)\). Chứng minh \(\Delta AIE = \Delta DKE\).

Xét hai tam giác vuông\(AIE\) và \(DKE\) có:

\(EA = ED\,\,\left( {gt} \right)\)

\(\widehat I = \widehat K = 90^\circ \,\,\left( {gt} \right)\)

\( \Rightarrow \widehat {IAE} = \widehat {KDE}\) (cm câu b)

Vậy \(\Delta AIE = \Delta DKE\) (cạnh huyền – góc nhọn).

d) Chứng minh \(3\) điểm \(I,E,K\) thẳng hàng.

Vì \(AC//BD\) (theo câu b) mà \(IE \bot AC\) nên \(IE \bot BD\)

Lại có \(EK \bot BD\left( {gt} \right)\) nên \(E;I;K\) cùng thuộc một đường thẳng.

Hay \(E,I,K\) thẳng hàng.

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com