Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện đều \(ABCD\) có cạnh bằng \(4\). Hình trụ \(\left( T \right)\) có một đường tròn

Câu hỏi số 388268:
Vận dụng

Cho tứ diện đều \(ABCD\) có cạnh bằng \(4\). Hình trụ \(\left( T \right)\) có một đường tròn đáy là đường tròn nội tiếp tam giác \(BCD\) và chiều cao bằng chiều cao của tứ diện \(ABCD\). Diện tích xung quanh của \(\left( T \right)\) bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:388268
Phương pháp giải

- Tính bán kính đường tròn nội tiếp đáy, sử dụng công thức \(r = \dfrac{S}{p}\) trong đó \(S,\,\,p\) lần lượt là diện tích và nửa chu vi của tam giác.

- Sử dụng định lí Pytago tính chiều cao của hình tứ diện.

- Diện tích xung quanh hình trụ có chiều cao \(h\), bán kính đáy \(r\) là \({S_{xq}} = 2\pi rh\).

Giải chi tiết

Tam giác \(BCD\) đều cạnh \(a\) nên \({S_{\Delta BCD}} = \dfrac{{{4^2}\sqrt 3 }}{4} = 4\sqrt 3 \).

Gọi \(p\) là nửa chu vi tam giác \(BCD\) ta có \(p = \dfrac{{3.4}}{2} = 6\).

Khi đó bán kính đường tròn nội tiếp tam giác \(BCD\) là \(r = \dfrac{S}{p} = \dfrac{{4\sqrt 3 }}{6} = \dfrac{{2\sqrt 3 }}{3}\), đây cũng chính là bán kính đáy của hình trụ.

Gọi \(O\) là trọng tâm tam giác \(BCD\) ta có \(AO \bot \left( {BCD} \right)\).

Xét tam giác vuông \(SOB\) có; \(BO = \dfrac{2}{3}.\dfrac{{4\sqrt 3 }}{2} = \dfrac{{4\sqrt 3 }}{3}\), \(AB = 4\).

\( \Rightarrow AO = \sqrt {A{B^2} - B{O^2}}  = \sqrt {{4^2} - {{\left( {\dfrac{{4\sqrt 3 }}{3}} \right)}^2}}  = \dfrac{{4\sqrt 6 }}{3}\), đây cũng chính là chiều cao của hình trụ.

Vậy diện tích xung quanh hình trụ là \({S_{xq}} = 2\pi .\dfrac{{2\sqrt 3 }}{3}.\dfrac{{4\sqrt 6 }}{3} = \dfrac{{16\sqrt 2 \pi }}{3}\).

Chọn A.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com