Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ \(Oxyz\), cho ba điểm \(A\left( {1;0;0} \right)\), \(B\left( {2;3;0}

Câu hỏi số 388270:
Thông hiểu

Trong không gian với hệ tọa độ \(Oxyz\), cho ba điểm \(A\left( {1;0;0} \right)\), \(B\left( {2;3;0} \right)\), \(C\left( {0;0;3} \right)\). Tập hợp các điểm \(M\left( {x;y;z} \right)\) thỏa mãn \(M{A^2} + M{B^2} + M{C^2} = 23\) là mặt cầu có bán kính bằng:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:388270
Phương pháp giải

- Tính độ dài đoạn thẳng \(AB\) biết \(A\left( {{x_A};{y_A};{z_A}} \right);\,\,B\left( {{x_B};{y_B};{z_B}} \right)\), sử dụng công thức \(AB = \sqrt {{{\left( {{x_A} - {x_B}} \right)}^2} + {{\left( {{y_A} - {y_B}} \right)}^2} + {{\left( {{z_A} - {z_B}} \right)}^2}} \).

- Mặt cầu \(\left( S \right):\,\,{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) có tâm \(I\left( {a;b;c} \right)\), bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).

Giải chi tiết

Ta có:

\(\begin{array}{l}M{A^2} = {\left( {x - 1} \right)^2} + {y^2} + {z^2}\\M{B^2} = {\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {z^2}\\M{C^2} = {x^2} + {y^2} + {\left( {z - 3} \right)^2}\end{array}\)

Theo bài ra ta có:

\(\begin{array}{l}M{A^2} + M{B^2} + M{C^2} = 23\\ \Rightarrow {\left( {x - 1} \right)^2} + {y^2} + {z^2} + {\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {z^2} + {x^2} + {y^2} + {\left( {z - 3} \right)^2} = 23\\ \Leftrightarrow 3{x^2} + 3{y^2} + 3{z^2} - 6x - 6y - 6z = 0\\ \Leftrightarrow {x^2} + {y^2} + {z^2} - 2x - 2y - 2z = 0\end{array}\)

Vậy tập hợp các điểm \(M\) là mặt cầu tâm \(I\left( {1;1;1} \right)\), bán kính \(R = \sqrt 3 \).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com