Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(z \in \mathbb{C},\,\,\left| {z - 2 + 3i} \right| = 5\). Biết rằng tập hợp biểu diễn số phức \(w =

Câu hỏi số 389211:
Vận dụng

Cho \(z \in \mathbb{C},\,\,\left| {z - 2 + 3i} \right| = 5\). Biết rằng tập hợp biểu diễn số phức \(w = i\overline z  + 12 - i\) là một đường tròn có bán kính \(R\). Bán kính \(R\) là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:389211
Phương pháp giải

- Rút \(\overline z \) theo \(w\).

- Sử dụng tính chất \(\left| z \right| = \left| {\overline z } \right|\).

- Thay \(\overline z \) theo \(w\) vào biểu thức, rút ra phương trình chứa ẩn \(w\)ở dạng \(\left| {w - \left( {a + bi} \right)} \right| = R\).

- Khi đó tập hợp các điểm biểu diễn số phức \(w\) là đường tròn có tâm \(I\left( {a;b} \right)\), bán kính \(R\).

Giải chi tiết

Ta có: \(w = i\overline z  + 12 - i \Leftrightarrow \overline z  = \dfrac{{w - 12 + i}}{i}\).

Theo bài ra ta có: \(\left| {z - 2 + 3i} \right| = 5 \Rightarrow \left| {\overline {z - 2 + 3i} } \right| = 5\)\( \Leftrightarrow \left| {\overline z  + 2 - 3i} \right| = 5\,\,\left( * \right)\).

Thay \( \Leftrightarrow \overline z  = \dfrac{{w - 12 + i}}{i}\) vào (*) ta có:

\(\begin{array}{l} \Leftrightarrow \left| {\dfrac{{w - 12 + i}}{i} + 2 - 3i} \right| = 5\\ \Leftrightarrow \left| {\dfrac{{w - 12 + i + 2i + 3}}{i}} \right| = 5\\ \Leftrightarrow \dfrac{{\left| {w - 9 + 3i} \right|}}{{\left| i \right|}} = 5\\ \Leftrightarrow \left| {w - 9 + 3i} \right| = 5\end{array}\)

Vậy tập hợp các điểm biểu diễn số phức \(w\) là đường tròn có tâm \(I\left( {9; - 3} \right)\), bán kính \(R = 5\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com