`

Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho \(z \in \mathbb{C},\,\,\left| {z - 2 + 3i} \right| = 5\). Biết rằng tập hợp biểu diễn số phức \(w = i\overline z  + 12 - i\) là một đường tròn có bán kính \(R\). Bán kính \(R\) là:

Câu 389211: Cho \(z \in \mathbb{C},\,\,\left| {z - 2 + 3i} \right| = 5\). Biết rằng tập hợp biểu diễn số phức \(w = i\overline z  + 12 - i\) là một đường tròn có bán kính \(R\). Bán kính \(R\) là:

A. \(2\sqrt 5 \)

B. \(3\sqrt 5 \)

C. \(5\)

D. \(\sqrt 5 \)

Câu hỏi : 389211

Phương pháp giải:

- Rút \(\overline z \) theo \(w\).


- Sử dụng tính chất \(\left| z \right| = \left| {\overline z } \right|\).


- Thay \(\overline z \) theo \(w\) vào biểu thức, rút ra phương trình chứa ẩn \(w\)ở dạng \(\left| {w - \left( {a + bi} \right)} \right| = R\).


- Khi đó tập hợp các điểm biểu diễn số phức \(w\) là đường tròn có tâm \(I\left( {a;b} \right)\), bán kính \(R\).

  • Đáp án : C
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Ta có: \(w = i\overline z  + 12 - i \Leftrightarrow \overline z  = \dfrac{{w - 12 + i}}{i}\).

    Theo bài ra ta có: \(\left| {z - 2 + 3i} \right| = 5 \Rightarrow \left| {\overline {z - 2 + 3i} } \right| = 5\)\( \Leftrightarrow \left| {\overline z  + 2 - 3i} \right| = 5\,\,\left( * \right)\).

    Thay \( \Leftrightarrow \overline z  = \dfrac{{w - 12 + i}}{i}\) vào (*) ta có:

    \(\begin{array}{l} \Leftrightarrow \left| {\dfrac{{w - 12 + i}}{i} + 2 - 3i} \right| = 5\\ \Leftrightarrow \left| {\dfrac{{w - 12 + i + 2i + 3}}{i}} \right| = 5\\ \Leftrightarrow \dfrac{{\left| {w - 9 + 3i} \right|}}{{\left| i \right|}} = 5\\ \Leftrightarrow \left| {w - 9 + 3i} \right| = 5\end{array}\)

    Vậy tập hợp các điểm biểu diễn số phức \(w\) là đường tròn có tâm \(I\left( {9; - 3} \right)\), bán kính \(R = 5\).

    Chọn C.

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - HƯớng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com