Tích các nghiệm của phương trình \({\log _2}\left( {x + 2} \right) + {\log _4}{\left( {x - 5} \right)^2} +
Tích các nghiệm của phương trình \({\log _2}\left( {x + 2} \right) + {\log _4}{\left( {x - 5} \right)^2} + {\log _{\frac{1}{2}}}8 = 0\) là:
Đáp án đúng là: A
Quảng cáo
Sử dụng các công thức: \(\left\{ \begin{array}{l}{\log _a}xy = {\log _a}x + {\log _a}y;\;\;{\log _a}\frac{x}{y} = {\log _a}x - {\log _a}y\\{\log _{{a^n}}}x = \frac{1}{n}{\log _a}x;\;\;{\log _a}{x^m} = m{\log _a}x\end{array} \right.\) (giả sử các biểu thức xác định).
Giải phương trình logarit: \({\log _a}f\left( x \right) = b \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) > 0\\0 < a \ne 1\\f\left( x \right) = {a^b}\end{array} \right..\)
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












