Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Gọi \(S\) là tập hợp tất cả các giá trị của tham số \(m\) để đồ thị hàm số \(y =

Câu hỏi số 391747:
Vận dụng

Gọi \(S\) là tập hợp tất cả các giá trị của tham số \(m\) để đồ thị hàm số \(y = \dfrac{{x - 1}}{{{x^2} + 2mx - m + 2}}\) có đúng hai đường tiệm cận. Tổng tất cả các phần tử của tập \(S\) bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:391747
Phương pháp giải

Đồ thị hàm số \(y = f\left( x \right)\) nhận đường thẳng \(x = a\) là tiệm cận đứng khi xảy ra một trong các giới hạn \(\mathop {\lim }\limits_{x \to {a^ \pm }} f\left( x \right) =  \pm \infty \).  

Đồ thị hàm số \(y = f\left( x \right)\) nhận đường thẳng \(y = b\) là tiệm cận ngang khi xảy ra một trong các giới hạn \(\mathop {\lim }\limits_{x \to  \pm \infty } f\left( x \right) = b\).

Tìm đường tiệm cận ngang của đồ thị hàm số để suy ra số đường tiệm cận đứng. Từ đó tìm giá trị của \(m\) thỏa mãn.

Giải chi tiết

Ta có: \(\mathop {\lim }\limits_{x \to  \pm \infty } y = \mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{x - 1}}{{{x^2} + 2mx - m + 2}} = 0\).

Do đó, đồ thị hàm số đã cho luôn nhận đường thẳng \(y = 0\) là tiệm cận ngang với mọi giá trị của \(m\).

Đồ thị hàm số có đúng hai đường tiệm cận khi và chỉ khi nó có đúng 1 đường tiệm cận đứng.

Đồ thị hàm số có đúng 1 tiệm cận đứng khi và chỉ khi phương trình \({x^2} + 2mx - m + 2 = 0\) hoặc có nghiệm kép, hoặc có 2 nghiệm phân biệt trong đó có 1 nghiệm bằng \(1\).     (1)

Phương trình \({x^2} + 2mx - m + 2 = 0\) có \(\Delta ' = {m^2} - \left( { - m + 2} \right) = {m^2} + m - 2\)

\(\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}\Delta ' = 0\\\left\{ \begin{array}{l}\Delta ' > 0\\{1^2} + 2m.1 - m + 2 = 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{m^2} + m - 2 = 0\\\left\{ \begin{array}{l}{m^2} + m - 2 > 0\\3 + m = 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}m = 1\\m =  - 2\end{array} \right.\\\left\{ \begin{array}{l}m > 1\\m <  - 2\\m =  - 3\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 1\\m =  - 2\\m =  - 3\end{array} \right.\)

Do đó, tập các giá trị của tham số \(m\) thỏa mãn là \(S = \left\{ {1; - 2; - 3} \right\}\).

Vậy tổng tất cả các phần tử của tập hợp \(S\) bằng \(1 - 2 - 3 =  - 4\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com