Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Xác định m để hệ bất phương trình sau vô nghiệm: \(\left\{ \begin{array}{l}3(x + 3) > 5\\5x + 8

Câu hỏi số 393054:
Vận dụng

Xác định m để hệ bất phương trình sau vô nghiệm: \(\left\{ \begin{array}{l}3(x + 3) > 5\\5x + 8 < 2m\end{array} \right.\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:393054
Phương pháp giải

Giải từng bất phương trình sau đó lấy giao các tập hợp nghiệm.

Giải chi tiết

\(\left\{ \begin{array}{l}3(x + 3) > 5\,\,\,\,\left( 1 \right)\\5x + 8 < 2m\,\,\,\,\left( 2 \right)\end{array} \right.\)

Giải (1): \(3\left( {x + 3} \right) > 5 \Leftrightarrow 3x + 9 > 5 \Leftrightarrow 3x >  - 4 \Leftrightarrow x >  - \frac{4}{3}\)

Tập hợp nghiệm của (1) là: \(\left( { - \frac{4}{3}; + \infty } \right)\)

Giải (2): \(5x + 8 > 2m \Leftrightarrow 5x < 2m - 8 \Leftrightarrow x < \frac{{2m - 8}}{5}\)

Tập hợp nghiệm của (2) là: \(\left( { - \infty ;\frac{{2m - 8}}{5}} \right)\)

Để hệ phương trình trên vô nghiệm thì \(\left( { - \infty ;\frac{{2m - 8}}{5}} \right) \cap \left( { - \frac{4}{3}; + \infty } \right) = \emptyset \)

\( \Rightarrow \frac{{2m - 8}}{5} \le  - \frac{4}{3} \Leftrightarrow 6m - 24 \le  - 20 \Leftrightarrow 6m \le 4 \Leftrightarrow m \le \frac{2}{3}\)

Vậy nếu \(m \le \frac{2}{3}\) thì hệ phương trình vô nghiệm.

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com