Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hai điểm \(M\left( {3;\,\,1} \right)\)  và \(I\left( {2;\,\, - 2} \right)\). Có bao nhiêu đường thẳng

Câu hỏi số 394110:
Vận dụng

Cho hai điểm \(M\left( {3;\,\,1} \right)\)  và \(I\left( {2;\,\, - 2} \right)\). Có bao nhiêu đường thẳng \(d\) đi qua \(M\) và cắt trục \(Ox\), \(Oy\) lần lượt tại hai điểm \(A\) và \(B\) sao cho tam giác \(IAB\) cân tại \(I\)?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:394110
Phương pháp giải

+ Viết phương trình đoạn chắn đi qua \(M\) và cắt trục \(Ox\), \(Oy\) lần lượt tại hai điểm \(A\) và \(B\).

+  Gọi \(N\) là trung điểm của \(AB\), tam giác \(IAB\) cân tại \(I\)\( \Leftrightarrow IN \bot AB\)

Giải chi tiết

Giả sử đường thẳng \(d\) đi qua \(M\) cắt trục \(Ox\) và \(Oy\)lần lượt tại hai điểm \(A\left( {a;\,\,0} \right)\) và \(B\left( {0;\,\,b} \right)\), \(a\,.\,\,b \ne 0\).

Phương trình đường thẳng \(d\) có dạng: \(\frac{x}{a} + \frac{y}{b} = 1\)

Vì đường thẳng \(d\) đi qua \(M\left( {3;\,\,1} \right)\) nên ta có: \(\frac{3}{a} + \frac{1}{b} = 1\)

Gọi \(N\left( {{x_N};\,\,{y_N}} \right)\) là trung điểm của \(AB\)\( \Rightarrow \left\{ \begin{array}{l}{x_N} = \frac{{a + 0}}{2}\\{y_N} = \frac{{b + 0}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_N} = \frac{a}{2}\\{y_N} = \frac{b}{2}\end{array} \right. \Rightarrow N\left( {\frac{a}{2};\,\,\frac{b}{2}} \right)\)

Ta có:

+) \(I\left( {2;\,\, - 2} \right);\,\,N\left( {\frac{a}{2};\,\,\frac{b}{2}} \right) \Rightarrow \overrightarrow {IN}  = \left( {\frac{a}{2} - 2;\frac{b}{2} + 2} \right) = \left( {\frac{{a - 4}}{2};\frac{{b + 4}}{2}} \right) = \left( {a - 4;\,\,b + 4} \right)\)

+) \(A\left( {a;\,\,0} \right),\,\,B\left( {0;\,\,b} \right) \Rightarrow \overrightarrow {AB}  = \left( { - a;\,\,b} \right)\)

\(\Delta IAB\) cân tại \(I\)\( \Leftrightarrow IN \bot AB \Leftrightarrow \overrightarrow {IN.} \overrightarrow {AB}  = 0\)\( \Leftrightarrow \left( {a - 4} \right)\left( { - a} \right) + b\left( {b + 4} \right) = 0\)

\( \Leftrightarrow  - {a^2} + 4a + {b^2} + 4b = 0\)

\( \Leftrightarrow \left( {{b^2} - {a^2}} \right) + \left( {4a + 4b} \right) = 0\)

\( \Leftrightarrow \left( {b - a} \right)\left( {b + a} \right) + 4\left( {b + a} \right) = 0\)

\( \Leftrightarrow \left( {b - a + 4} \right)\left( {b + a} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}b - a + 4 = 0\\b + a = 0\end{array} \right.\)

- Trường hợp 1: \(b - a + 4 = 0 \Rightarrow a - b = 4 \Leftrightarrow a = b + 4\)

Thay \(a = b + 4\) vào CT \(\frac{3}{a} + \frac{1}{b} = 1\) ta có:

\(\frac{3}{{b + 4}} + \frac{1}{b} = 1 \Leftrightarrow 3b + \left( {b + 4} \right) = b\left( {b + 4} \right) \Leftrightarrow 3b + b + 4 = {b^2} + 4b \Leftrightarrow {b^2} - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}b =  - 2\\b = 2\end{array} \right.\)

Với \(b =  - 2\) \( \Rightarrow a = 2\). Phương trình đường thẳng \(d\) là: \(\frac{x}{2} + \frac{y}{{ - 2}} = 1 \Leftrightarrow \frac{x}{2} - \frac{y}{2} = 1 \Leftrightarrow x - y - 2 = 0\)

Với \(b = 2 \Rightarrow a = 6\). Phương trình đường thẳng \(d\) là: \(\frac{x}{6} + \frac{y}{2} = 1 \Leftrightarrow \frac{x}{6} + \frac{y}{2} = 1 \Leftrightarrow x + 3y - 6 = 0\)

- Trường hợp 2: Thay \(b =  - a\) vào công thức \(\frac{3}{a} + \frac{1}{b} = 1\) ta được: \(\frac{3}{a} - \frac{1}{a} = 1 \Leftrightarrow \frac{2}{a} = 1 \Rightarrow a = 2\)

Với \(a = 2 \Rightarrow b =  - 2\). Phương trình đường thẳng \(d\) là: \(\frac{x}{2} + \frac{y}{{ - 2}} = 1 \Leftrightarrow \frac{x}{2} - \frac{y}{2} = 1 \Leftrightarrow x - y - 2 = 0\)

Vậy phương trình đường thẳng \(d\) là \(x - y - 2 = 0\) hoặc \(x + 3y - 6 = 0.\)

Chọn  C.

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com