Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện \(ABCD\) có \(BC = a,\) \(CD = a\sqrt 3 ,\) \(\widehat {BCD} = \widehat {ABC} = \widehat {ADC} =

Câu hỏi số 396632:
Vận dụng cao

Cho tứ diện \(ABCD\) có \(BC = a,\) \(CD = a\sqrt 3 ,\) \(\widehat {BCD} = \widehat {ABC} = \widehat {ADC} = {90^0}\). Số đo góc giữa hai đường thẳng \(BC\) và \(AD\) bằng \({60^0}\). Bán kính mặt cầu ngoại tiếp tứ diện \(ABCD\) bằng:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:396632
Phương pháp giải

Tam giác ABC vuông tại A suy ra A, B, C nằm trên mặt cầu đường kính BC.

Giải chi tiết

Gọi I, O, M lần lượt là trung điểm của AC, BD, CD.

Do \(\widehat {ABC} = \widehat {ADC} = {90^0}\) nên A, B, C, D nằm trên mặt cầu (S) tâm I, đường kính AC.

Lại có, tam giác BCD vuông tại C \( \Rightarrow \) O là tâm đường tròn (C) ngoại tiếp tam giác BCD (trên mặt phẳng (BCD)

\( \Rightarrow OI \bot \left( {BCD} \right)\)

Ta có: \(OM//BC,\,\,IM//CD,\,\) góc giữa hai đường thẳng \(BC\) và \(AD\) bằng \({60^0} \Rightarrow \left( {\widehat {IM;OM}} \right) = {60^0}\)

\( \Rightarrow \Delta OIM\) vuông tại O và \(\widehat {IMO} = {60^0}\).

Ta có: \(BD = \sqrt {B{C^2} + C{D^2}}  = \sqrt {{a^2} + {{\left( {a\sqrt 3 } \right)}^2}}  = 2a \Rightarrow r = a\) (bán kính đường tròn (C)

Khoảng cách từ tâm I đến (BCD): \(d = OI = OM.\tan \widehat {IMO} = \dfrac{1}{2}.a.\tan {60^0} = \dfrac{{a\sqrt 3 }}{2}\)

Ta có: \({R^2} = {r^2} + {d^2} = {a^2} + {\left( {\dfrac{{a\sqrt 3 }}{2}} \right)^2} = \dfrac{{7{{\rm{a}}^2}}}{4} \Leftrightarrow R = \dfrac{{a\sqrt 7 }}{2}\) (R là bán kính mặt cầu (S)).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com