Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ trục tọa độ \(Oxyz\), cho hai điểm \(M\left( {1;\,2;\, - 4} \right)\) và

Câu hỏi số 399151:
Thông hiểu

Trong không gian với hệ trục tọa độ \(Oxyz\), cho hai điểm \(M\left( {1;\,2;\, - 4} \right)\) và \(M'\left( {5;\,4;\,2} \right)\). Biết rằng \(M'\) là hình chiếu vuông góc của \(M\) lên mặt phẳng \(\left( \alpha  \right)\). Khi đó, mặt phẳng \(\left( \alpha  \right)\) có một véc tơ pháp tuyến là

Đáp án đúng là: C

Quảng cáo

Câu hỏi:399151
Phương pháp giải

- Nếu \(\overrightarrow a  \bot \left( P \right)\) thì vecto \(\overrightarrow a \)  là một vecto pháp tuyến của mặt phẳng \(\left( P \right)\).

- Vecto \(\overrightarrow a \)  là một vecto pháp tuyến của mặt phẳng \(\left( P \right)\)thì vecto \(k\overrightarrow a \,\,\left( {k \ne 0} \right)\) cũng là vecto pháp tuyến của mặt phẳng \(\left( P \right)\).

Giải chi tiết

Vì \(M'\) là hình chiếu vuông góc của \(M\) lên mp\(\left( \alpha  \right)\) nên \(M'M \bot \left( \alpha  \right)\)

Do đó, \(\overrightarrow {MM'} \) là một vecto pháp tuyến của mặt phẳng \(\left( \alpha  \right).\)

Suy ra mặt phẳng \(\left( \alpha  \right)\) có một vecto pháp tuyến là : \(\overrightarrow {MM'}  = \left( {4;2;6} \right).\)

Vậy mặt phẳng \(\left( \alpha  \right)\) cũng có một vecto pháp tuyến \(\overrightarrow n  = \dfrac{1}{2}\overrightarrow {MM'}  = \left( {2;1;3} \right).\)  

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com