Xét các số phức z thỏa mãn \(\left( {z + 2i} \right)\left( {\bar z{\rm{\;}} + 2} \right)\) là số thuần
Xét các số phức z thỏa mãn \(\left( {z + 2i} \right)\left( {\bar z{\rm{\;}} + 2} \right)\) là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là:
Đáp án đúng là: D
Quảng cáo
Số phức \(z = a + bi\,\,\,{\mkern 1mu} \left( {a,b \in \mathbb{R}} \right)\) là số thuần ảo khi và chỉ khi phần thực bằng 0.
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












