Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - {x^2} + a\,\,\,khi\,\,x \ge  - 1\\{x^2} +

Câu hỏi số 400426:
Vận dụng cao

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - {x^2} + a\,\,\,khi\,\,x \ge  - 1\\{x^2} + bx\,\,\,\,khi\,\,x <  - 1\end{array} \right.\). Tìm \(a,\,\,b\) để hàm số có đạo hàm tại \(x =  - 1\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:400426
Phương pháp giải

- Tìm \(a\) để hàm số liên tục tại \(x =  - 1\), từ đó rút \(b\) theo \(a\).

- Tính \(f'\left( { - {1^ + }} \right) = \mathop {\lim }\limits_{x \to  - {1^ + }} \frac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}}\), \(f'\left( { - {1^ - }} \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} \frac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}}\) .

- Để hàm số tồn tại đạo hàm tại \(x =  - 1\) thì \(f'\left( { - {1^ + }} \right) = f'\left( { - {1^ - }} \right)\).

Giải chi tiết

TXĐ: \(D = \mathbb{R},\,\,x =  - 1 \in D\).

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( { - {x^2} + a} \right) = a - 1 = f\left( { - 1} \right)\\\mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( {{x^2} + bx} \right) = 1 - b\end{array}\)

Để hàm số liên tục tại \(x =  - 1\) thì \(\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x \right) = f\left( { - 1} \right)\)\( \Leftrightarrow a - 1 = 1 - b \Leftrightarrow a + b = 2\).

Tính đạo hàm tại điểm \(x =  - 1\):

\(\begin{array}{l}f'\left( { - {1^ + }} \right) = \mathop {\lim }\limits_{x \to  - {1^ + }} \frac{{ - {x^2} + a - \left( { - 1 + a} \right)}}{{x + 1}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to  - {1^ + }} \frac{{ - {x^2} + 1}}{{x + 1}} = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( { - x + 1} \right) = 2\\f'\left( { - {1^ - }} \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} \frac{{{x^2} + bx - \left( { - 1 + a} \right)}}{{x + 1}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to  - {1^ - }} \frac{{{x^2} + bx + 1 - a}}{{x + 1}}\end{array}\)

Thay \(a = 2 - b\) ta có:

\(\begin{array}{l}f'\left( { - {1^ - }} \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} \frac{{{x^2} + bx - 1 + b}}{{x + 1}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to  - {1^ - }} \frac{{\left( {x - 1} \right)\left( {x + 1} \right) + b\left( {x + 1} \right)}}{{x + 1}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( {x - 1 + b} \right) = b - 2\end{array}\).

Để hàm số có đạo hàm tại \(x =  - 1\) thì \(f'\left( { - {1^ + }} \right) = f'\left( { - {1^ - }} \right)\)\( \Leftrightarrow b - 2 = 2 \Leftrightarrow b = 4\)\( \Rightarrow a = -2\).

Vậy \(a = -2,\,\,b = 4\).

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com