Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}a{x^2} + bx + 1\,\,\,khi\,\,x \ge 0\\ax - b -

Câu hỏi số 400801:
Vận dụng

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}a{x^2} + bx + 1\,\,\,khi\,\,x \ge 0\\ax - b - 1\,\,\,\,\,\,\,khi\,\,x < 0\end{array} \right.\). Khi hàm số \(f\left( x \right)\) có đạo hàm tại \({x_0} = 0\). Hãy tính \(T = a - 2b\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:400801
Phương pháp giải

- Tìm điều kiện để hàm số liên tục tại \(x = 0\): \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right)\).

- Tìm điều kiện để hàm số có đạo hàm tại \(x = 0\): \(f'\left( {{0^ + }} \right) = f'\left( {{0^ - }} \right)\), với \(f\left( {{0^ \pm }} \right) = \mathop {\lim }\limits_{x \to {0^ \pm }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\).

Giải chi tiết

TXĐ: \(D = \mathbb{R},\,\,x = 0 \in D\).

Để hàm số có đạo hàm tại \({x_0} = 0\), trước hết hàm số phải liên tục tại \(x = 0\).

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {a{x^2} + bx + 1} \right) = 1 = f\left( 0 \right)\\\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {ax - b - 1} \right) =  - b - 1\end{array}\)

Để hàm số liên tục tại \(x = 0\) thì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right)\) \( \Leftrightarrow  - b - 1 = 1 \Leftrightarrow b =  - 2\).

Ta có:

\(\begin{array}{l}f'\left( {{0^ + }} \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{a{x^2} + bx + 1 - 1}}{x}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to {0^ + }} \left( {ax + b} \right) = b =  - 2\\f'\left( {{0^ - }} \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{ax - b - 1 - 1}}{x}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{ax}}{x} = a\end{array}\)

Để hàm số có đạo hàm tại \(x = 0\) thì \(f'\left( {{0^ + }} \right) = f'\left( {{0^ - }} \right)\) \( \Leftrightarrow a =  - 2\).

Vậy \(T = a - 2b =  - 2 - 2.\left( { - 2} \right) = 2\).

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com