Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(f\left( x \right) = m{x^3} - 3m{x^2} + 3x - 1\) (m là tham số).

Cho \(f\left( x \right) = m{x^3} - 3m{x^2} + 3x - 1\) (m là tham số).

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng

Tìm \(m\) để \(f'\left( x \right) > 0\,\,\forall x \in \mathbb{R}\).

Đáp án đúng là: B

Câu hỏi:401287
Phương pháp giải

Tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\,\,\left( {a \ne 0} \right)\).

+ \(f\left( x \right) \ge 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta  \le 0\end{array} \right.\).

+ \(f\left( x \right) \le 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}a < 0\\\Delta  \le 0\end{array} \right.\).

Giải chi tiết

Ta có: \(f'\left( x \right) = 3m{x^2} - 6mx + 3\).

TH1: \(3m = 0 \Leftrightarrow m = 0\).

\( \Rightarrow f'\left( x \right) = 3 > 0\,\,\,\forall x \in \mathbb{R}\), do đó \(m = 0\) thỏa mãn.

TH2: \(3m \ne 0 \Leftrightarrow m \ne 0\)

\(f'\left( x \right) > 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}3m > 0\\\Delta ' < 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\9{m^2} - 9m < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\0 < m < 1\end{array} \right.\)\( \Leftrightarrow 0 < m < 1.\) 

Vậy \(0 \le m < 1\).

Đáp án cần chọn là: B

Câu hỏi số 2:
Vận dụng

Tìm \(m\) để \(f'\left( x \right) \le 0\,\,\forall x \in \mathbb{R}\).

Đáp án đúng là: D

Câu hỏi:401288
Phương pháp giải

Tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\,\,\left( {a \ne 0} \right)\).

+ \(f\left( x \right) \ge 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta  \le 0\end{array} \right.\).

+ \(f\left( x \right) \le 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}a < 0\\\Delta  \le 0\end{array} \right.\).

Giải chi tiết

Ta có: \(f'\left( x \right) = 3m{x^2} - 6mx + 3\).

TH1: \(3m = 0 \Leftrightarrow m = 0\).

\( \Rightarrow f'\left( x \right) = 3 > 0\,\,\,\forall x \in \mathbb{R}\), do đó \(m = 0\) không thỏa mãn.

TH2: \(3m \ne 0 \Leftrightarrow m \ne 0\)

\(f'\left( x \right) \le 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}3m < 0\\\Delta ' \le 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m < 0\\9{m^2} - 9m \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 0\\0 \le m \le 1\end{array} \right. \Leftrightarrow m \in \emptyset \). 

Vậy \(m \in \emptyset \).

Đáp án cần chọn là: D

Quảng cáo

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com