Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian \(Oxyz\), cho ba đường thẳng \(\left( {{d_1}} \right):\,\,\dfrac{{x - 3}}{2} = \dfrac{{y +

Câu hỏi số 402008:
Vận dụng

Trong không gian \(Oxyz\), cho ba đường thẳng \(\left( {{d_1}} \right):\,\,\dfrac{{x - 3}}{2} = \dfrac{{y + 1}}{1} = \dfrac{{z - 2}}{{ - 2}}\), \(\left( {{d_2}} \right):\,\,\dfrac{{x + 1}}{3} = \dfrac{y}{{ - 2}} = \dfrac{{z + 4}}{{ - 1}}\) và \(\left( {{d_3}} \right):\,\,\dfrac{{x + 3}}{4} = \dfrac{{y - 2}}{{ - 1}} = \dfrac{z}{6}\). Đường thẳng song song \({d_3}\), cắt \({d_1}\) và \({d_2}\) có phương trình là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:402008
Phương pháp giải

- Hai đường thẳng song song có các VTCP cùng phương.

- Gọi \(A = d \cap {d_1},\,\,B = d \cap {d_2}\), tham số hóa tọa độ điểm \(A,\,\,B\).

- Đường thẳng đi qua \(A,\,\,B\) nhận \(\overrightarrow {AB} \) làm 1 VTCP.

- \(\overrightarrow {AB} \) và \(\overrightarrow {{u_3}} \) (VTCP của \({d_3}\)) cùng phương, từ đó tìm tọa độ \(A,\,\,B\) và viết phương trình đường thẳng \(d\).

- Đường thẳng đi qua \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTCP \(\overrightarrow u \left( {a;b;c} \right)\) có phương trình: \(\dfrac{{x - {x_0}}}{a} = \dfrac{{y - {y_0}}}{b} = \dfrac{{z - {z_0}}}{c}\).

Giải chi tiết

Gọi \(\overrightarrow {{u_3}}  = \left( {4; - 1;6} \right)\) là 1 VTCP của đường thẳng \({d_3}\).

Gọi đường thẳng cần tìm là \(d\). Vì \(d\parallel {d_3}\) nên \(d\) nhận \(\overrightarrow {{u_3}}  = \left( {4; - 1;6} \right)\) là 1 VTCP.

Gọi \(\left\{ \begin{array}{l}A = d \cap {d_1} \Rightarrow A\left( {3 + 2{t_1}; - 1 + {t_1};2 - 2{t_1}} \right)\\B = d \cap {d_2} \Rightarrow B\left( { - 1 + 3{t_2}; - 2{t_2}; - 4 - {t_2}} \right)\end{array} \right.\).

Khi đó ta có: \(\overrightarrow {AB}  = \left( {3{t_2} - 2{t_1} - 4; - 2{t_2} - {t_1} + 1; - {t_2} + 2{t_1} - 6} \right)\) cũng là 1 VTCP của đường thẳng \(d\).

\( \Rightarrow \overrightarrow {AB} \) và \(\overrightarrow {{u_3}} \) là 2 vectơ cùng phương.

\(\begin{array}{l} \Leftrightarrow \dfrac{{3{t_2} - 2{t_1} - 4}}{4} = \dfrac{{ - 2{t_2} - {t_1} + 1}}{{ - 1}} = \dfrac{{ - {t_2} + 2{t_1} - 6}}{6}\\ \Leftrightarrow \left\{ \begin{array}{l} - 3{t_2} + 2{t_1} + 4 =  - 8{t_2} - 4{t_1} + 4\\{t_2} - 2{t_1} + 6 =  - 12{t_2} - 6{t_1} + 6\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}5{t_2} + 6{t_1} = 0\\13{t_2} + 4{t_1} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{t_1} = 0\\{t_2} = 0\end{array} \right.\\ \Rightarrow A\left( {3; - 1;2} \right);\,\,B\left( { - 1;0; - 4} \right)\end{array}\)

Vậy phương trình đường thẳng \(d\) đi qua \(A\left( {3; - 1;2} \right)\), nhận \(\overrightarrow {{u_3}} \left( {4; - 1;6} \right)\parallel \overrightarrow u \left( { - 4;1; - 6} \right)\) có phương trình là:

\(\dfrac{{x - 3}}{{ - 4}} = \dfrac{{y + 1}}{1} = \dfrac{{z - 2}}{{ - 6}}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com