Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai liên tục trên \(\mathbb{R}\). Biết rằng các

Câu hỏi số 402012:
Vận dụng cao

Cho hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai liên tục trên \(\mathbb{R}\). Biết rằng các tiếp tuyến của đồ thị \(y = f\left( x \right)\) tại các điểm có hoành độ \(x =  - 1\), \(x = 0\), \(x = 1\) lần lượt tạo với chiều dương của trục \(Ox\) các góc \({30^0}\), \({45^0}\), \({60^0}\). Tính tích phân \(I = \int\limits_{ - 1}^0 {f'\left( x \right).f''\left( x \right)dx}  + 4\int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^3}.f''\left( x \right)dx} \).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:402012
Phương pháp giải

- Hệ số góc của tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là \(k = f'\left( {{x_0}} \right)\).

- Hệ số góc của đường thẳng bằng tan của góc tạo bởi đường thẳng và chiều dương của trục \(Ox\).

- Tính tích phân bằng phương pháp đổi biến số, đặt \(t = f'\left( x \right)\).

Giải chi tiết

Vì các tiếp tuyến của đồ thị \(y = f\left( x \right)\) tại các điểm có hoành độ \(x =  - 1\), \(x = 0\), \(x = 1\) lần lượt tạo với chiều dương của trục \(Ox\) các góc \({30^0}\), \({45^0}\), \({60^0}\) nên ta có: \(y'\left( { - 1} \right) = \tan {30^0} = \dfrac{{\sqrt 3 }}{3}\), \(y'\left( 0 \right) = \tan {45^0} = 1\), \(y'\left( 1 \right) = \tan {60^0} = \sqrt 3 \).

Đặt \({I_1} = \int\limits_{ - 1}^0 {f'\left( x \right).f''\left( x \right)dx} \) , \({I_2} = \int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^3}.f''\left( x \right)dx} \).

Đặt \(t = f'\left( x \right)\) \( \Rightarrow dt = f''\left( x \right)dx\).

Đổi cận: \(\left\{ \begin{array}{l}x =  - 1 \Rightarrow t = f'\left( { - 1} \right) = \dfrac{{\sqrt 3 }}{3}\\x = 0 \Rightarrow t = f'\left( 0 \right) = 1\\x =  - 1 \Rightarrow t = f'\left( 1 \right) = \sqrt 3 \end{array} \right.\).

Khi đó ta có:

\(\begin{array}{l}{I_1} = \int\limits_{\dfrac{{\sqrt 3 }}{3}}^1 {tdt}  = \left. {\dfrac{{{t^2}}}{2}} \right|_{\dfrac{{\sqrt 3 }}{3}}^1 = \dfrac{1}{2} - \dfrac{1}{6} = \dfrac{1}{3}\\{I_2} = \int\limits_1^{\sqrt 3 } {{t^3}dt}  = \left. {\dfrac{{{t^4}}}{4}} \right|_1^{\sqrt 3 } = \dfrac{9}{4} - \dfrac{1}{4} = 2\end{array}\)

Vậy \(I = {I_1} + 4{I_2} = \dfrac{1}{3} + 8 = \dfrac{{25}}{3}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com