Cho elip \(\left( E \right):\,\,\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\). Hai điểm \(A,\,\,B\) là hai đỉnh
Cho elip \(\left( E \right):\,\,\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\). Hai điểm \(A,\,\,B\) là hai đỉnh của elip lần lượt nằm trên hai trục \(Ox,\,\,Oy\). Khi đó độ dài đoạn thẳng \(AB\) bằng:
Đáp án đúng là: B
Quảng cáo
+) Xác định tọa độ của \(A\), \(B\).
+) Vì \(A,\,\,B\) là hai đỉnh của elip lần lượt nằm trên hai trục \(Ox,\,\,Oy\) nên tam giác \(OAB\) vuông tại \(O\).
+) Áp dụng định lý Pytago để tìm ra độ dài đoạn \(AB\).
Đáp án cần chọn là: B
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












