Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giá trị của \(m\) để đường thẳng \(\Delta :\,\,x - 2y + m = 0\) cắt elip \(\left( E

Câu hỏi số 402372:
Vận dụng

Giá trị của \(m\) để đường thẳng \(\Delta :\,\,x - 2y + m = 0\) cắt elip \(\left( E \right):\,\,\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\) tại hai điểm phân biệt là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:402372
Phương pháp giải

Cho elip \(\left( E \right):\,\,\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) và đường thẳng \(\left( d \right):\,\,ax + by + c = 0\).

Tọa độ giao điểm của \(\left( d \right)\) và \(\left( E \right)\) là nghiệm của hệ phương trình: \(\,\left\{ \begin{array}{l}\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\\ax + by + c = 0\end{array} \right.\)

Sử dụng phương pháp thế để làm xuất hiện phương trình bậc hai từ đó xác định điều kiện để \(\left( d \right)\) và \(\left( E \right)\) cắt nhau tại hai điểm phân biệt.

Giải chi tiết

Tọa độ giao điểm của đường thẳng \(\left( \Delta  \right)\) và \(\left( E \right)\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}x - 2y + m = 0\\\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2y - m\\\frac{{{{\left( {2y - m} \right)}^2}}}{4} + \frac{{{y^2}}}{1} = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - m\\{\left( {2y - m} \right)^2} + 4{y^2} = 4\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - m\\8{y^2} - 4my + {m^2} - 4 = 0\,\,\,\,\,\left( * \right)\end{array} \right.\)

Để đường thẳng \(\left( \Delta  \right)\) cắt \(\left( E \right)\) tại hai điểm phân biệt thì phương trình \(\left( * \right)\) có hai nghiệm phân biệt

\(\begin{array}{l} \Leftrightarrow \Delta  > 0 \Leftrightarrow 16{m^2} - 4.8.\left( {{m^2} - 4} \right) > 0\\ \Leftrightarrow 16{m^2} - 32{m^2} + 128 > 0\\ \Leftrightarrow {m^2} < 8\\ \Leftrightarrow  - 2\sqrt 2  < m < 2\sqrt 2 \end{array}\)

Vậy với \( - 2\sqrt 2  < m < 2\sqrt 2 \) thì đường thẳng \(\Delta :\,\,x - 2y + m = 0\) cắt elip \(\left( E \right):\,\,\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\) tại hai điểm phân biệt.

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com