Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho các biểu thức \(A = \frac{{x - 3}}{{x + 2}}\) và \(B = \frac{{6 - 7x}}{{{x^2} - 4}} + \frac{3}{{x + 2}} -

Cho các biểu thức \(A = \frac{{x - 3}}{{x + 2}}\) và \(B = \frac{{6 - 7x}}{{{x^2} - 4}} + \frac{3}{{x + 2}} - \frac{2}{{2 - x}}\)

Trả lời cho các câu 1, 2, 3 dưới đây:

Câu hỏi số 1:
Vận dụng

Tìm điều kiện xác định của \(B\) và rút gọn biểu thức \(B\).

Đáp án đúng là: D

Câu hỏi:402428
Phương pháp giải

Tìm điều kiện xác định mẫu số khác 0 và quy đồng rút gọn.

Giải chi tiết

Điều kiện xác định: \(\left\{ \begin{array}{l}x - 2 \ne 0\\x + 2 \ne 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x \ne 2\\x \ne  - 2\end{array} \right.\)

\(\begin{array}{l}B = \frac{{6 - 7x}}{{{x^2} - 4}} + \frac{3}{{x + 2}} - \frac{2}{{2 - x}}\\\,\,\,\,\, = \frac{{6 - 7x + 3\left( {x - 2} \right) + 2\left( {x + 2} \right)}}{{{x^2} - 4}}\\\,\,\,\,\, = \frac{{6 - 7x + 3x - 6 + 2x + 4}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\\,\,\,\, = \frac{{ - 2x + 4}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\\,\,\,\, = \frac{{ - 2\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\\,\,\,\, = \frac{{ - 2}}{{x + 2}}\end{array}\)

Đáp án cần chọn là: D

Câu hỏi số 2:
Vận dụng

Cho \(A = \frac{1}{2},\) khi đó hãy tính giá trị của \(B.\)

Đáp án đúng là: A

Câu hỏi:402429
Phương pháp giải

Với \(A = \frac{1}{2}\) ta tìm \(x\) rồi thay vào \(B.\)

Giải chi tiết

Điều kiện xác định: \(x \ne  \pm 2.\)

\(A = \frac{{x - 3}}{{x + 2}}\,\,\,\)

Ta có: \(A = \frac{1}{2} \Leftrightarrow \frac{{x - 3}}{{x + 2}} = \frac{1}{2} \Rightarrow 2x - 6 = x + 2 \Leftrightarrow x = \,8\,\,\,\left( {tm} \right)\)

Thay \(x = 8\) vào \(B \Rightarrow B = \frac{{ - 2}}{{8 + 2}} = \frac{{ - 2}}{{10}} = \frac{{ - 1}}{5}.\)

Đáp án cần chọn là: A

Câu hỏi số 3:
Vận dụng

Đặt \(M = \frac{A}{B}.\) Tìm các giá trị của \(x\) để \(\left| M \right| =  - M.\)

Đáp án đúng là: A

Câu hỏi:402430
Phương pháp giải

Sử dụng định nghĩa \(\left| A \right| = \left\{ \begin{array}{l}A\,\,\,khi\,\,\,A \ge 0\\ - A\,\,\,khi\,\,\,A < 0\end{array} \right.\) để chứng tỏ \(M < 0\) và giải bất phương trình \(M < 0\).

Giải chi tiết

Điều kiện xác định: \(x \ne  \pm 2.\)

\(M = \frac{A}{B} = \frac{{\frac{{x - 3}}{{x + 2}}}}{{\frac{{ - 2}}{{x + 2}}}} = \frac{{x - 3}}{{ - 2}}\)

Vì \(\left| M \right| =  - M \Rightarrow M < 0 \Leftrightarrow \frac{{x - 3}}{{ - 2}} < 0\)\( \Rightarrow x - 3 > 0 \Leftrightarrow x > 3.\)

Kết hợp điều kiện \(x \ne  \pm 2\) \( \Rightarrow x > 3.\)

Vậy \(\left| M \right| =  - M\,\,\,khi\,\,\,x > 3.\)

Đáp án cần chọn là: A

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com