Cho hình chữ nhật \(ABCD\) có \(AB = 8cm,\,\,\,BC = 6cm.\) Kẻ \(BH\) vuông góc với \(AC\) tại
Cho hình chữ nhật \(ABCD\) có \(AB = 8cm,\,\,\,BC = 6cm.\) Kẻ \(BH\) vuông góc với \(AC\) tại \(H,\,\,DM\) vuông góc với \(AC\) tại \(M.\)
a) Chứng minh \(\Delta {\rm{ABH}}\) đồng dạng với \(\Delta {\rm{ACB}}\) và suy ra \(AC.AH = A{B^2}.\)
b) Tính độ dài các đoạn thẳng \(AC,\,\,BH,\,\,CH.\)
c) Gọi \(I\) là điểm đối xứng với \(B\) qua \(AC.\) Chứng minh \(DM = IH\) và \(ACID\) là hình thang cân.
d) Gọi \(E,\,\,F\) lần lượt là trung điểm của \(AH,\,\,CD\) và \(K\) là giao điểm của \(BF\) với \(AC.\)
Chứng minh \(BF.EK \ge BE.EF.\)
Quảng cáo
a) Chứng minh \(\Delta ABH \sim \Delta ACB\) qua trường hợp đồng dạng góc – góc.
b) Áp dụng định lý Pytago tính \(AC,\) sau đó áp dụng \(AC.AH = A{B^2}\) tính \(AH\) rồi tính \(BH,\,\,CH.\)
c) Chứng minh \(DM = IH\,\,\,\left( { = BH} \right).\)
Chứng minh \(ID//MH \Rightarrow ID//AC \Rightarrow ACID\) là hình thang và \(\angle DAM = \angle ICH\)\( \Rightarrow ACID\) là hình thang cân
d) Gọi \(N\) là trung điểm \(BH\) \( \Rightarrow ENCF\) là hình bình hành \( \Rightarrow EF//NC\) mà \(N\) là trực tâm tam giác \(BEC \Rightarrow NC \bot EB.\)
Suy ra \(\Delta BEF\) vuông tại \(E\).
Gọi \(EP \bot BF\left( {P \in BF} \right)\) mà \(K \in BF \Rightarrow EK \ge EP\)\( \Rightarrow BE.EF = EP.BF \le EK.BF\)
>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










