Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chữ nhật \(ABCD\) có \(AB = 8cm,\,\,\,BC = 6cm.\) Kẻ \(BH\) vuông góc với \(AC\) tại

Câu hỏi số 402436:
Vận dụng

Cho hình chữ nhật \(ABCD\) có \(AB = 8cm,\,\,\,BC = 6cm.\) Kẻ \(BH\) vuông góc với \(AC\) tại \(H,\,\,DM\)  vuông góc với \(AC\) tại \(M.\)

a) Chứng minh \(\Delta {\rm{ABH}}\) đồng dạng với \(\Delta {\rm{ACB}}\) và suy ra \(AC.AH = A{B^2}.\)

b) Tính độ dài các đoạn thẳng \(AC,\,\,BH,\,\,CH.\)

c) Gọi \(I\) là điểm đối xứng với \(B\) qua \(AC.\) Chứng minh \(DM = IH\) và \(ACID\) là hình thang cân.

d) Gọi \(E,\,\,F\) lần lượt là trung điểm của \(AH,\,\,CD\) và \(K\) là giao điểm của \(BF\) với \(AC.\) 

Chứng minh \(BF.EK \ge BE.EF.\)

Quảng cáo

Câu hỏi:402436
Phương pháp giải

a) Chứng minh \(\Delta ABH \sim \Delta ACB\) qua trường hợp đồng dạng góc – góc.

b) Áp dụng định lý Pytago tính \(AC,\)  sau đó áp dụng \(AC.AH = A{B^2}\) tính \(AH\) rồi tính \(BH,\,\,CH.\)

c) Chứng minh \(DM = IH\,\,\,\left( { = BH} \right).\)

Chứng minh \(ID//MH \Rightarrow ID//AC \Rightarrow ACID\) là hình thang và \(\angle DAM = \angle ICH\)\( \Rightarrow ACID\) là hình thang cân

d) Gọi \(N\) là trung điểm \(BH\) \( \Rightarrow ENCF\) là hình bình hành \( \Rightarrow EF//NC\) mà \(N\) là trực tâm tam giác \(BEC \Rightarrow NC \bot EB.\)

Suy ra \(\Delta BEF\) vuông tại \(E\).

Gọi \(EP \bot BF\left( {P \in BF} \right)\) mà \(K \in BF \Rightarrow EK \ge EP\)\( \Rightarrow BE.EF = EP.BF \le EK.BF\)

Giải chi tiết

a) Chứng minh \(\Delta {\rm{ABH}}\) đồng dạng với \(\Delta {\rm{ACB}}\) và suy ra \(AC.AH = A{B^2}.\)

Xét \(\Delta {\rm{ABH}}\) và \(\Delta {\rm{ACB}}\) có:

\(\begin{array}{l}\angle H = \angle B\left( { = {{90}^0}} \right)\\\angle BAH\,\,chung\\ \Rightarrow \Delta ABH \sim \Delta ACB\,\,\,\left( {g - g} \right).\\ \Rightarrow \frac{{AB}}{{AH}} = \frac{{AC}}{{AB}} \Rightarrow AC.AH = A{B^2}.\end{array}\)

b) Tính độ dài các đoạn thẳng \(AC,\,\,BH,\,\,CH.\)

Áp dụng định lý Pytago cho tam giác vuông \(ABC\)vuông tại \(B\) có:

\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} = {8^2} + {6^2} = 100\\ \Rightarrow AC = 10\,\,cm.\end{array}\)

Ta có: \(AC.AH = A{B^2} \Rightarrow 10.AH = {8^2}\)\( \Rightarrow AH = 6,4\,\,cm.\)

Áp dụng định lý Pytago cho tam giác vuông \(ABH\) vuông tại \(H\) có:

\(A{B^2} = A{H^2} + B{H^2} \Rightarrow BH{\rm{ = }}\sqrt {{8^2} - 6,{4^2}}  = 4,8cm\)

\(CH = AC - AH = 10 - 6,4 = 3,6cm\)

c) Gọi \(I\) là điểm đối xứng với \(B\) qua \(AC.\) Chứng minh \(DM = IH\)\(ACID\) là hình thang cân.

Xét \(\Delta ABH\) và \(\Delta {\rm{CDM}}\) có:

\(\begin{array}{l}\angle AHB = \angle CMD\,\,\,\left( { = {{90}^0}} \right)\\AB = CD\\\angle BAH = \angle DCM\,\,\,\left( {so\,\,le\,\,\,trong} \right)\end{array}\)

\( \Rightarrow \Delta ABH = \Delta CDM\,\,\,\left( {ch - gn} \right)\)

\( \Rightarrow BH = DM\) (hai cạnh tương ứng)

 Mà \(BH = IH \Rightarrow DM = IH\)

Ta có: \(\left\{ \begin{array}{l}IH \bot AC\\DM \bot AC\end{array} \right. \Rightarrow IH//DM\)

Mà \(IH = DM \Rightarrow DMHI\) là hình bình hành (dhnb).

\( \Rightarrow ID//MH \Rightarrow ID//AC\)

\( \Rightarrow ACID\)là hình thang  (1)

Ta có: \(\Delta BCH = \Delta ICH\,\,\,\left( {ch - cgv} \right)\)

\( \Rightarrow BC = CI \Rightarrow AD = CI\)

Xét \(\Delta ADM\)và \(\Delta CIH\) có:

\(\begin{array}{l}\angle AMD = \angle CHI\left( { = {{90}^0}} \right)\\AD = CI\,\,\left( {cmt} \right)\\DM = IH\,\,\,\left( {cmt} \right)\\ \Rightarrow \Delta ADM = \Delta CIH\,\,\,\left( {ch - cgv} \right)\end{array}\)

\( \Rightarrow \angle DAM = \angle ICH\)  (2)

Từ (1), (2) \( \Rightarrow ACID\) là hình thang cân. (đpcm)

d) Gọi \(E,\,\,F\) lần lượt là trung điểm của \(AH,\,\,CD\)\(K\) là giao điểm của \(BF\) với \(AC.\) 

Chứng minh \(BF.EK \ge BE.EF.\)

Gọi \(N\) là trung điểm \(BH \Rightarrow EN\) là đường trung bình của \(\Delta ABH\) \( \Rightarrow \left\{ \begin{array}{l}EN//AB\\EN = \frac{{AB}}{2}\end{array} \right..\)

Mà \(\left\{ \begin{array}{l}FC//AB\\FC = \frac{{CD}}{2} = \frac{{AB}}{2}\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}FC//EN\\FC = NE\end{array} \right.\)\( \Rightarrow ENCF\) là hình bình hành (dhnb).

\( \Rightarrow EF//NC\) (1)

Ta có: \(\left\{ \begin{array}{l}AB//EN\\AB \bot BC\end{array} \right. \Rightarrow EN \bot BC\)

Lại có: \(BH \bot EC \Rightarrow N\) là trực tâm tam giác \(BEC\) \( \Rightarrow NC \bot EB\) (2)

Từ (1), (2) \( \Rightarrow EF \bot EB\)\( \Rightarrow \Delta BEF\) vuông tại \(E\).

Gọi \(EP \bot BF\left( {P \in BF} \right)\) mà \(K \in BF \Rightarrow EK \ge EP\)

\(\begin{array}{l}{S_{\Delta BEF}} = \frac{1}{2}BE.EF = \frac{1}{2}EP.BF\\ \Rightarrow BE.EF = EP.BF \le EK.BF\\ \Rightarrow BE.EF \le BF.EK\,\,\,\,\left( {dpcm} \right).\end{array}\)

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com