Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hàm số \(f\left( x \right) = \frac{{{x^2} + 1}}{{{x^2} - 5x + 6}}\) liên tục trên các khoảng nào sau

Câu hỏi số 402442:
Thông hiểu

Hàm số \(f\left( x \right) = \frac{{{x^2} + 1}}{{{x^2} - 5x + 6}}\) liên tục trên các khoảng nào sau đây?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:402442
Phương pháp giải

- Tìm tập xác định của hàm số \(f\left( x \right) = \frac{{{x^2} + 1}}{{{x^2} - 5x + 6}}.\)

- Hàm phân thức liên tục trên các khoảng xác định của chúng.

Giải chi tiết

Hàm số \(f\left( x \right) = \frac{{{x^2} + 1}}{{{x^2} - 5x + 6}}\) xác định khi \({x^2} - 5x + 6 \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 2\\x \ne 3\end{array} \right..\)

\( \Rightarrow \) Tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {2;3} \right\}\).

Vậy hàm số liên tục trên các khoảng \(\left( { - \infty ;2} \right),\,\,\left( {2;3} \right),\,\,\left( {3; + \infty } \right)\).

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com