Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện đều \(ABCD\). Tính góc giữa hai vecto \(\overrightarrow {AB} \) và \(\overrightarrow {BC}

Câu hỏi số 402461:
Thông hiểu

Cho tứ diện đều \(ABCD\). Tính góc giữa hai vecto \(\overrightarrow {AB} \) và \(\overrightarrow {BC} \).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:402461
Phương pháp giải

- Dựng vectơ gốc \(A\) bằng vectơ \(\overrightarrow {BC} \).

- Chứng minh \(\Delta ABC\) đều, sử dụng tính chất của tam giác đều.

Giải chi tiết

Dựng hình bình hành \(ABCE\), khi đó ta có \(\overrightarrow {BC}  = \overrightarrow {AE} \).

\( \Rightarrow \angle \left( {\overrightarrow {AB} ;\overrightarrow {BC} } \right) = \angle \left( {\overrightarrow {AB} ;\overrightarrow {AE} } \right) = \angle BAE\).

Vì tứ diện \(ABCD\) đều nên \(AB = BC = CA \Rightarrow \Delta ABC\) đều.

Do đó \(\angle ABC = {60^0}\).

Mà \(ABCE\) là hình bình hành (theo cách dựng) nên \(\angle BAE = {180^0} - \angle ABC = {120^0}\).

Vậy \(\angle \left( {\overrightarrow {AB} ;\overrightarrow {BC} } \right) = {120^0}\).

Chú ý khi giải

Nhiều học sinh nhầm lẫn \(\angle \left( {\overrightarrow {AB} ;\overrightarrow {BC} } \right) = \angle ABC\).

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com