Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a\). Hình chiếu vuông góc của

Câu hỏi số 402862:
Vận dụng

Cho hình lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a\). Hình chiếu vuông góc của điểm \(A'\) lên mặt phẳng \(\left( {ABC} \right)\) trùng với trọng tâm tam giác \(ABC\). Biết khoảng cách giữa hai đường thẳng \(AA'\) và \(BC\) bằng \(\dfrac{{a\sqrt 3 }}{4}\). Tính theo \(a\) thể tích \(V\) của khối lăng trụ \(ABC.A'B'C'\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:402862
Phương pháp giải

- Xác định đoạn vuông góc chung của hai đoạn thẳng \(AA'\) và \(BC\).

- Áp dụng hệ thức lượng trong tam giác vuông tính \(A'G\).

- Áp dụng công thức tính thể tích \({V_{ABC.A'B'C'}} = A'G.{S_{ABC}}\).

Giải chi tiết

Gọi \(M\) là trung điểm của \(BC\). Vì tam giác \(ABC\) đều nên \(AM \bot BC\) và \(AM = \dfrac{{a\sqrt 3 }}{2}\) \( \Rightarrow AG = \dfrac{2}{3}AM = \dfrac{{a\sqrt 3 }}{3}\).

Ta có \(A'G \bot \left( {ABC} \right)\) nên \(A'G \bot BC\); \(BC \bot AM\) \( \Rightarrow BC \bot \left( {MAA'} \right)\).

Trong \(\left( {AA'M} \right)\) kẻ \(MI \bot AA'\) tại \(I\); khi đó ta có \(BC \bot IM\) nên \(IM\) là đoạn vuông góc chung của \(AA'\) và \(BC\), do đó \(d\left( {AA';{\rm{ }}BC} \right) = IM = \dfrac{{a\sqrt 3 }}{4}.\)

Trong \(\left( {AA'M} \right)\) kẻ \(GH \bot AA'\) tại \(H\), áp dụng định lí Ta-lét ta có \(\dfrac{{AG}}{{AM}} = \dfrac{{GH}}{{IM}} = \dfrac{2}{3}\)\( \Leftrightarrow GH = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{4} = \dfrac{{a\sqrt 3 }}{6}\).

Áp dụng hệ thức lượng trong tam giác vuông \(AA'G\) ta có:

\(\dfrac{1}{{H{G^2}}} = \dfrac{1}{{A'{G^2}}} + \dfrac{1}{{A{G^2}}} \Leftrightarrow A'G = \dfrac{{AG.HG}}{{\sqrt {A{G^2} - H{G^2}} }} = \dfrac{{\dfrac{{a\sqrt 3 }}{3}.\dfrac{{a\sqrt 3 }}{6}}}{{\sqrt {\dfrac{{{a^2}}}{3} - \dfrac{{{a^2}}}{{12}}} }} = \dfrac{a}{3}\).

Tam giác \(ABC\) đều cạnh \(a\) nên \({S_{\Delta ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\).

Vậy \({V_{ABC.A'B'C'}} = A'G.{S_{ABC}} = \dfrac{a}{3}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^2}\sqrt 3 }}{{12}}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com