Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp đều \(S.ABCD\) có độ dài cạnh đáy bằng \(2a\). Gọi \(G\) là trọng tâm tam giác

Câu hỏi số 402863:
Vận dụng

Cho hình chóp đều \(S.ABCD\) có độ dài cạnh đáy bằng \(2a\). Gọi \(G\) là trọng tâm tam giác \(SAC\). Mặt phẳng chứa \(AB\) và đi qua \(G\) cắt các cạnh \(SC\), \(SD\) lần lượt tại \(M\) và \(N\). Biết mặt bên của hình chóp tạo với đáy một góc bằng \(60^\circ \). Thể tích khối chóp \(S.ABMN\) bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:402863
Phương pháp giải

- Xác định các điểm \(M,\,\,N\), chứng minh \(M,\,\,N\) lần lượt là trung điểm của \(SC,\,\,SD\).

- Xác định góc giữa mặt bên và mặt đáy là góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.

- Tính đường cao \(SO\) với \(O\) là tâm hình vuông \(ABCD\), từ đó tính \({V_{S.ABCD}}\).

- Tách \({V_{S.ABMN}} = {V_{S.ABM}} + {V_{S.AMN}}\).

- Sử dụng tỉ lệ thể tích Simpson.

Giải chi tiết

Vì \(G\) là trọng tâm tam giác \(SAC\) nên \(AG\) cắt \(SC\) tại trung điểm \(M\) của \(SC\), tương tự \(BG\) cắt \(SD\) tại trung điểm \(N\) của \(SD\).

Gọi \(O\) là tâm của hình vuông \(ABCD\) và \(I\) là trung điểm của \(AB\).

Ta có: \(\left\{ \begin{array}{l}AB \bot OI\\AB \bot SO\end{array} \right. \Rightarrow AB \bot \left( {SOI} \right) \Rightarrow AB \bot SI\).

\(\left\{ \begin{array}{l}\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\\left( {SAB} \right) \supset SI \bot AB\\\left( {ABCD} \right) \supset OI \bot AB\end{array} \right.\)\( \Rightarrow \angle \left( {\left( {SAB} \right);\left( {ABCD} \right)} \right) = \angle \left( {SI;OI} \right) = \angle SIO = {60^0}\).

Xét tam giác vuông \(SOI\) có: \(SO = OI.\tan 60^\circ  = a\sqrt 3 \).

Suy ra \({V_{S.ABCD}} = \dfrac{1}{3}{S_{ABCD}}.SO = \dfrac{1}{3}4{a^2} \cdot a\sqrt 3  = \dfrac{{4{a^3}\sqrt 3 }}{3}\).

Ta có:

\(\dfrac{{{V_{S.ABM}}}}{{{V_{S.ABC}}}} = \dfrac{{SA}}{{SA}} \cdot \dfrac{{SB}}{{SB}} \cdot \dfrac{{SM}}{{SC}} = \dfrac{1}{2}\) \( \Rightarrow {V_{S.ABM}} = \dfrac{1}{2}.{V_{S.ABC}} = \dfrac{1}{4}{V_{S.ABCD}}\).

\(\dfrac{{{V_{S.AMN}}}}{{{V_{S.ACD}}}} = \dfrac{{SA}}{{SA}} \cdot \dfrac{{SN}}{{SD}} \cdot \dfrac{{SM}}{{SC}} = \dfrac{1}{2} \cdot \dfrac{1}{2} = \dfrac{1}{4}\) \( \Rightarrow {V_{S.AMN}} = \dfrac{1}{4}.{V_{S.ACD}} = \dfrac{1}{8}{V_{S.ABCD}}\).

Vậy \({V_{S.ABMN}} = {V_{S.ABM}} + {V_{S.AMN}} = \dfrac{3}{8}{V_{S.ABCD}}\)\( = \dfrac{3}{8}\dfrac{{4{a^3}\sqrt 3 }}{3} = \dfrac{{{a^3}\sqrt 3 }}{2}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com