Cho hình chóp đều \(S.ABCD\) có độ dài cạnh đáy bằng \(2a\). Gọi \(G\) là trọng tâm tam giác
Cho hình chóp đều \(S.ABCD\) có độ dài cạnh đáy bằng \(2a\). Gọi \(G\) là trọng tâm tam giác \(SAC\). Mặt phẳng chứa \(AB\) và đi qua \(G\) cắt các cạnh \(SC\), \(SD\) lần lượt tại \(M\) và \(N\). Biết mặt bên của hình chóp tạo với đáy một góc bằng \(60^\circ \). Thể tích khối chóp \(S.ABMN\) bằng:
Đáp án đúng là: A
Quảng cáo
- Xác định các điểm \(M,\,\,N\), chứng minh \(M,\,\,N\) lần lượt là trung điểm của \(SC,\,\,SD\).
- Xác định góc giữa mặt bên và mặt đáy là góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.
- Tính đường cao \(SO\) với \(O\) là tâm hình vuông \(ABCD\), từ đó tính \({V_{S.ABCD}}\).
- Tách \({V_{S.ABMN}} = {V_{S.ABM}} + {V_{S.AMN}}\).
- Sử dụng tỉ lệ thể tích Simpson.
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













