Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho số phức \(z = m - 2 + \left( {{m^2} - 1} \right)i,m \in \mathbb{R}\). Gọi \(\left( C \right)\) là tập hợp các điểm biểu diễn số phức z trong mặt phẳng tọa độ. Diện tích hình phẳng giới hạn bởi \(\left( C \right)\) và trục hoành bằng

Câu 403007: Cho số phức \(z = m - 2 + \left( {{m^2} - 1} \right)i,m \in \mathbb{R}\). Gọi \(\left( C \right)\) là tập hợp các điểm biểu diễn số phức z trong mặt phẳng tọa độ. Diện tích hình phẳng giới hạn bởi \(\left( C \right)\) và trục hoành bằng

A. \(\dfrac{4}{3}.\)

B. \(\dfrac{{32}}{3}.\)

C. \(\dfrac{8}{3}.\)

D. \(1.\)

Câu hỏi : 403007

Phương pháp giải:

- Tìm tọa độ điểm \(M\) biểu diễn số phức \(z\).


- Tìm hàm số biểu thị mối liên hệ giữa tọa độ diểm \(M\) không phụ thuộc vào \(m\).


- Cho hai hàm số \(f\left( x \right);g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đồ thị \(y = f\left( x \right),y = g\left( x \right)\) và các đường thẳng \(x = a,x = b\) bằng \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

  • Đáp án : A
    (1) bình luận (0) lời giải

    Giải chi tiết:

    Ta có điểm biểu diễn của số phức z là \(M\left( {m - 2;{m^2} - 1} \right) \Rightarrow \left\{ \begin{array}{l}x = m - 2\\y = {m^2} - 1\end{array} \right.\)

    \( \Rightarrow y + 1 = {\left( {x + 2} \right)^2} \Leftrightarrow y = {x^2} + 4x + 3\)

    \( \Rightarrow \left( C \right):\,\,y = {x^2} + 4x + 3\) là 1 parabol.

    Hoành độ giao điểm của đồ thị hàm số \(y = {x^2} + 4x + 3\) với trục hoành là: \({x^2} + 4x + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 3\\x =  - 1\end{array} \right.\)

    Diện tích hình phẳng cần tìm là \(S = \int\limits_{ - 3}^{ - 1} {\left| {{x^2} + 4x + 3} \right|dx}  =  - \int\limits_{ - 3}^{ - 1} {\left( {{x^2} + 4x + 3} \right)}  = \dfrac{4}{3}.\)

    Chọn A.

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com