Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \dfrac{{\left( {m + 1} \right)x + 2m + 2}}{{x

Câu hỏi số 404570:
Vận dụng

Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \dfrac{{\left( {m + 1} \right)x + 2m + 2}}{{x + m}}\) nghịch biến trên \(\left( { - 1; + \infty } \right)\)?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:404570
Phương pháp giải

- Tìm TXĐ của hàm số.

- Tính đạo hàm của hàm số.

- Để hàm số nghịch biến trên các khoảng xác định thì \(y' < 0\).

Giải chi tiết

TXĐ: \(D = \mathbb{R}\backslash \left\{ { - m} \right\}\).

Ta có: \(y' = \dfrac{{m\left( {m + 1} \right) - 2m - 2}}{{{{\left( {x + m} \right)}^2}}} = \dfrac{{{m^2} - m - 2}}{{{{\left( {x + m} \right)}^2}}}\,\,\forall x \in D\).

Để hàm số nghịch biến trên các khoảng xác định của nó thì \(y' < 0\,\,\forall x \in D\)

\( \Rightarrow \left\{ \begin{array}{l}{m^2} - m - 2 < 0\\\left( { - 1; + \infty } \right) \subset D\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 1 < m < 2\\ - m \notin \left( { - 1; + \infty } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 1 < m < 2\\ - m \le  - 1\end{array} \right. \Leftrightarrow 1 \le m < 2\).

Vì \(m \in \mathbb{Z}\) nên \(m = 1\).

Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com