Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(y = x + \sqrt {{x^2} + 1} \). Ta có \(\dfrac{{y'}}{y}\) bằng:

Câu hỏi số 406063:
Vận dụng

Cho \(y = x + \sqrt {{x^2} + 1} \). Ta có \(\dfrac{{y'}}{y}\) bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:406063
Phương pháp giải

- Sử dụng công thức tính đạo hàm hàm hợp \(\left( {{u^n}} \right)' = n.{u^{n - 1}}.u'\).

- Sử dụng các công thức tính đạo hàm hàm lượng giác: \(\left( {\sin u} \right)' = u'.\cos u\), \(\left( {\cos u} \right)' =  - u'.\sin u\).

- Sử dụng công thức nhân đôi: \(2\sin x\cos x = \sin 2x\).

Giải chi tiết

Ta có: \(y' = 1 + \dfrac{{2x}}{{2\sqrt {{x^2} + 1} }} = 1 + \dfrac{x}{{\sqrt {{x^2} + 1} }} = \dfrac{{\sqrt {{x^2} + 1}  + x}}{{\sqrt {{x^2} + 1} }}\).

\(\begin{array}{l} \Rightarrow \dfrac{{y'}}{y} = \dfrac{{\sqrt {{x^2} + 1}  + x}}{{\sqrt {{x^2} + 1} }}:\left( {x + \sqrt {{x^2} + 1} } \right)\\\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{\sqrt {{x^2} + 1}  + x}}{{\sqrt {{x^2} + 1} }}.\dfrac{1}{{x + \sqrt {{x^2} + 1} }} = \dfrac{1}{{\sqrt {{x^2} + 1} }}\end{array}\)

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com