Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = \dfrac{{m\tan x + 1}}{{4\tan x + m}}\). Tìm m để \(y' > 0\,\,\forall x \in \left(

Câu hỏi số 406074:
Vận dụng cao

Cho hàm số \(y = \dfrac{{m\tan x + 1}}{{4\tan x + m}}\). Tìm m để \(y' > 0\,\,\forall x \in \left( {0;\dfrac{\pi }{4}} \right)\) .

Đáp án đúng là: B

Quảng cáo

Câu hỏi:406074
Phương pháp giải

- Đặt \(t = \tan x\), tìm khoảng giá trị của t ứng với \(x \in \left( {0  ;\dfrac{\pi }{4}} \right)\).

- Viết hàm số theo biến t.

- Tính y’. Tìm điều kiện của m để thỏa mãn yêu cầu bài toán.

Giải chi tiết

Đặt \(t = \tan x\), với \(x \in \left( {0  ;\dfrac{\pi }{4}} \right)\)\( \Rightarrow t \in \left( {0;1} \right)\).

Khi đó hàm số trở thành \(y = \dfrac{{mt + 1}}{{4t + m}}\).

ĐKXĐ: \(t \ne  - \dfrac{m}{4}\).

Ta có: \(y' = \dfrac{{{m^2} - 4}}{{{{\left( {4t + m} \right)}^2}}}\).

Để \(y' > 0{\mkern 1mu} {\mkern 1mu} \,\,\forall x \in \left( {0;\dfrac{\pi }{4}} \right)\) thì \(\dfrac{{{m^2} - 4}}{{{{\left( {4t + m} \right)}^2}}} > 0\,\,\,\forall t \in \left( {0;1} \right),\,\,t \ne  - \dfrac{m}{4}\).

\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 4 > 0\\ - \dfrac{m}{4} \notin \left( {0;1} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 2\\m <  - 2\end{array} \right.\\\left[ \begin{array}{l} - \dfrac{m}{4} \le 0\\ - \dfrac{m}{4} \ge 1\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 2\\m <  - 2\end{array} \right.\\\left[ \begin{array}{l}m \ge 0\\m \le  - 4\end{array} \right.\end{array} \right.\).

Vậy \(m \in \left( { - \infty ; - 4} \right] \cup \left( {2; + \infty } \right)\).

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com