Biết \({z_1},\,\,{z_2}\) là hai nghiệm phức của phương trình \({z^2} - z + 1 = 0.\) Tính \(\left| {z_1^3
Biết \({z_1},\,\,{z_2}\) là hai nghiệm phức của phương trình \({z^2} - z + 1 = 0.\) Tính \(\left| {z_1^3 + z_2^3} \right|.\)
Đáp án đúng là: D
Quảng cáo
Cách 1: Giải phương trình đã cho tìm \({z_1},\,\,{z_2}\) rồi tính biểu thức đề bài cho.
Cách 2: Áp dụng hệ thức Vi-et ta có: \(\left\{ \begin{array}{l}{z_1} + {z_2} = 1\\{z_1}{z_2} = 1\end{array} \right..\)
Theo đề bài ta có: \(z_1^3 + z_2^3 = \left( {{z_1} + {z_2}} \right)\left[ {{{\left( {{z_1} + {z_2}} \right)}^2} - 3{z_1}{z_2}} \right]\) rồi tính modun hai vế.
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












