Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm giá trị nhỏ nhất của hàm số \(y = x + \dfrac{{16}}{{\sqrt x }}.\)

Câu hỏi số 408258:
Vận dụng

Tìm giá trị nhỏ nhất của hàm số \(y = x + \dfrac{{16}}{{\sqrt x }}.\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:408258
Phương pháp giải

Cách 1:

+) Tìm GTLN và GTNN của hàm số \(y = f\left( x \right)\) trên \(\left[ {a;\;b} \right]\) bằng cách:

+) Giải phương trình \(y' = 0\) tìm các nghiệm \({x_i}.\)

+) Tính các giá trị \(f\left( a \right),\;f\left( b \right),\;\;f\left( {{x_i}} \right)\;\;\left( {{x_i} \in \left[ {a;\;b} \right]} \right).\)  Khi đó:

\(\mathop {\min }\limits_{\left[ {a;\;b} \right]} f\left( x \right) = \min \left\{ {f\left( a \right);\;f\left( b \right);\;f\left( {{x_i}} \right)} \right\},\;\;\mathop {\max }\limits_{\left[ {a;\;b} \right]} f\left( x \right) = \max \left\{ {f\left( a \right);\;f\left( b \right);\;f\left( {{x_i}} \right)} \right\}.\) 

Cách 2: Sử dụng chức năng MODE 7 để tìm GTLN, GTNN của hàm số trên \(\left[ {a;\;b} \right].\)

Giải chi tiết

Xét hàm số \(y = x + \dfrac{{16}}{{\sqrt x }}\) ta có:

TXĐ: \(D = \left( {0; + \infty } \right).\)

\(\begin{array}{l}y' = 1 - \dfrac{{16.\dfrac{1}{{2\sqrt x }}}}{{\sqrt x }} = 1 - \dfrac{8}{{x\sqrt x }} = \dfrac{{x\sqrt x  - 8}}{{x\sqrt x }}\\ \Rightarrow y' = 0 \Leftrightarrow x\sqrt x  - 8 = 0 \Leftrightarrow x\sqrt x  = 8\\ \Leftrightarrow {\left( {\sqrt x } \right)^3} = {2^3} \Leftrightarrow \sqrt x  = 2 \Leftrightarrow x = 4\,\,\left( {tm} \right)\end{array}\)

Ta có bảng xét dấu:

\( \Rightarrow \mathop {Min}\limits_{\left( {0; + \infty } \right)} y = 12\) khi \(x = 4.\)

Chọn D.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com