Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a. Hình chiếu vuông góc của đỉnh S lên mặt
Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a. Hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABC) là điểm H trên cạnh AB sao cho HA = 2HB. Góc giữa SC và mặt phẳng (ABC) bằng \({60^0}\). Tính khoảng ách giữa hai đường thẳng SA và BC theo a.
Đáp án đúng là: D
Quảng cáo
- Sử dụng định lí: Góc giữa hai đường thẳng chéo nhau là góc giữa đường thẳng này và mặt phẳng song song với nó chứa đường thẳng kia.
- Dựng hình bình hành ABCD, chứng minh \(d\left( {SA;BC} \right) = d\left( {B;\left( {SAD} \right)} \right)\).
- Đổi điểm tính khoảng từ H đến (SAD), sử dụng phương pháp dựng 3 nét.
- Xác định góc giữa đường và mặt là góc giữa đường thẳng và hình chiếu của đường thẳng trên mặt phẳng đó.
- Sử dụng tỉ số lượng giác của góc nhọn và hệ thức lượng trong tam giác vuông để tính khoảng cách.
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













