Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có tất cả bao nhiêu giá trị thực của tham số \(m\) để đồ thị hàm số \(y = \dfrac{2}{3}{x^3} -

Câu hỏi số 409264:
Vận dụng

Có tất cả bao nhiêu giá trị thực của tham số \(m\) để đồ thị hàm số \(y = \dfrac{2}{3}{x^3} - m{x^2} - 2\left( {3{m^2} - 1} \right)x + \dfrac{2}{3}\) có hai điểm cực trị có hoành độ \({x_1},{x_2}\)sao cho \({x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right) = 1\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:409264
Phương pháp giải

- Tìm đạo hàm của hàm số.

- Tìm điều kiện để hàm số có 2 điểm cực trị: Phương trình \(y' = 0\) có hai nghiệm phân biệt.

- Sử dụng định lí Viét để tìm mối quan hệ giữa hai cực trị \({x_1};\,\,{x_2}\) của hàm số.

- Dựa vào dữ kiện đề bài để tìm m.

Giải chi tiết

TXĐ: \(D = \mathbb{R}\).

Ta có hàm số \(y = \dfrac{2}{3}{x^3} - m{x^2} - 2\left( {3{m^2} - 1} \right)x + \dfrac{2}{3}\) có đạo hàm là \(y' = 2{x^2} - 2mx - 2\left( {3{m^2} - 1} \right)\)

Cho \(y' = 0 \Leftrightarrow 2{x^2} - 2mx - 2\left( {3{m^2} - 1} \right) = 0\) \( \Leftrightarrow {x^2} - mx - 3{m^2} + 1 = 0\)   (1)

Để hàm số có 2 điểm cực trị thì phương trình (1) phải có 2 nghiệm phân biệt.

Phương trình (1) có hai nghiệm khi và chỉ khi 

\(\Delta {\rm{\;}} = {m^2} + 12{m^2} - 4 > 0 \Leftrightarrow 13{m^2} - 4 > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{m > \dfrac{2}{{\sqrt {13} }}}\\
{m < {\rm{\;}} - \dfrac{2}{{\sqrt {13} }}}
\end{array}} \right.\)

Khi đó hai điểm cực trị \({x_1},\,\,{x_2}\) của hàm số chính là hai nghiệm phân biệt của phương trình (1). Áp dụng định lý Viét ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}{x_2} = 1 - 3{m^2}\end{array} \right.\).

Theo bài ra ta có:

\(\begin{array}{l}{x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right) = 1\\ \Leftrightarrow 1 - 3{m^2} + 2m = 1\\ \Leftrightarrow 3{m^2} - 2m = 0\\ \Leftrightarrow \left[ \begin{array}{l}m = 0\,\,\,\,\left( {ktm} \right)\\m = \dfrac{2}{3}\,\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

Chọn A.

Chú ý khi giải

Sau khi tìm được m cần đối chiếu với điều kiện để loại các giá trị không thỏa mãn, tránh chọn nhầm đáp án D.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com