Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f(x)\) liên tục trên \(\left[ { - 1;2} \right]\)và thỏa mãn điều kiện \(f(x) = \sqrt {x +

Câu hỏi số 409273:
Vận dụng

Cho hàm số \(f(x)\) liên tục trên \(\left[ { - 1;2} \right]\)và thỏa mãn điều kiện \(f(x) = \sqrt {x + 2}  + xf\left( {3 - {x^2}} \right)\). Tính tích phân \(I = \int\limits_{ - 1}^2 {f(x)dx} \).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:409273
Phương pháp giải

- Lấy tích phân từ \( - 1\) đến 2 của hai vế của phương trình đã cho.

- Sử dụng phương pháp tính tích phân bằng phương pháp đổi biến.

- Sử dụng tính chất không phụ thuộc vào biến của tích phân: \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_a^b {f\left( u \right)du} \).

Giải chi tiết

Ta có

\(\begin{array}{l}f\left( x \right) = \sqrt {x + 2}  + xf\left( {3 - {x^2}} \right)\\ \Rightarrow I = \int\limits_{ - 1}^2 {f\left( x \right)dx}  = \int\limits_{ - 1}^2 {\sqrt {x + 2} dx}  + \int\limits_{ - 1}^2 {xf\left( {3 - {x^2}} \right)dx} \\ \Rightarrow I = {I_1} + {I_2}\end{array}\)

Xét tích phân \({I_1} = \int\limits_{ - 1}^2 {\sqrt {x + 2} dx} \).

Đặt \(t = \sqrt {x + 2} \) \( \Rightarrow {t^2} = x + 2 \Rightarrow 2tdt = dx\).

Đổi cận: \(\left\{ \begin{array}{l}x =  - 1 \Rightarrow t = 1\\x = 2 \Rightarrow t = 2\end{array} \right.\).

\( \Rightarrow {I_1} = \int\limits_1^2 {t.2tdt}  = 2\int\limits_1^2 {{t^2}dt}  = \left. {\dfrac{{2{t^3}}}{3}} \right|_1^2 = \dfrac{{14}}{3}.\)

Xét tích phân \({I_2} = \int\limits_{ - 1}^2 {xf\left( {3 - {x^2}} \right)dx} \).

Đặt \(u = 3 - {x^2} \Rightarrow du =  - 2xdx\) \( \Rightarrow xdx =  - \dfrac{1}{2}du\).

Đổi cận: \(\left\{ \begin{array}{l}x = 1 \Rightarrow u = 2\\x = 2 \Rightarrow u =  - 1\end{array} \right.\).

\( \Rightarrow {I_2} = \int\limits_2^{ - 1} { - \dfrac{1}{2}f\left( u \right)du}  = \dfrac{1}{2}\int\limits_{ - 1}^2 {f\left( x \right)dx}  = \dfrac{1}{2}I\).

Vậy \(I = \dfrac{{14}}{3} + \dfrac{1}{2}I \Leftrightarrow \dfrac{1}{2}I = \dfrac{{14}}{3} \Leftrightarrow I = \dfrac{{28}}{3}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com