Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có hai con lắc lò xo giống hệt nhau dao động điều hoà trên mặt phẳng nằm ngang dọc theo hai

Câu hỏi số 410518:
Vận dụng cao

Có hai con lắc lò xo giống hệt nhau dao động điều hoà trên mặt phẳng nằm ngang dọc theo hai đường thẳng song song cạnh nhau và song song với trục Ox. Biên độ của con lắc một là \({A_1} = 4\,\,cm\), của con lắc hai là \({A_2} = 4\sqrt 3 \,\,cm\), con lắc hai dao động sớm pha hơn con lắc một. Trong quá trình dao động khoảng cách lớn nhất giữa hai vật dọc treo trục Ox là \(a = 4\,\,cm\). Khi động năng của con lắc một cực đại là \(W\) thì động năng của con lắc hai là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:410518
Phương pháp giải

Khoảng cách giữa hai vật: \(x = \left| {{x_1} - {x_2}} \right|\)

Khoảng cách lớn nhất giữa hai con lắc: \({A^2} = {A_1}^2 + {A_2}^2 - 2{A_1}{A_2}\cos \left( {\Delta \varphi  + \pi } \right)\)

Thế năng của con lắc: \({W_t} = \dfrac{1}{2}k{x^2}\)

Cơ năng của con lắc: \(W = \dfrac{1}{2}k{A^2}\)

Giải chi tiết

Gọi \(\Delta \varphi \) là độ lệch pha giữa hai con lắc.

Khoảng cách lớn nhất giữa hai con lắc là:

\(\begin{array}{l}{A_{\max }}^2 = {A_1}^2 + {A_2}^2 + 2{A_1}{A_2}\cos \left( {\Delta \varphi  + \pi } \right)\\ \Rightarrow {4^2} = {4^2} + {\left( {4\sqrt 3 } \right)^2} + 2.4.4\sqrt 3 \cos \left( {\Delta \varphi  + \pi } \right)\\ \Rightarrow \cos \left( {\Delta \varphi  + \pi } \right) = -\dfrac{{\sqrt 3 }}{2} \Rightarrow \Delta \varphi  =  - \dfrac{\pi }{6}\,\,\left( {rad} \right)\end{array}\)

Động năng con lắc thứ nhất đạt cực đại khi nó ở VTCB, khi đó con lắc thứ hai có li độ:

\({x_2} =  \pm \dfrac{{{A_2}}}{2}\)

Động năng cực đại của con lắc thứ nhất là:

\({W_{d1\max }} = {W_{t1\max }} = \dfrac{1}{2}k{A_1}^2\)

Động năng của con lắc thứ hai khi đó là:

\(\begin{array}{l}{W_{d2}} = {W_2} - {W_{t2}} = \dfrac{1}{2}k{A_2}^2 - \dfrac{1}{2}k{x_2}^2 = \dfrac{1}{2}k{A_2}^2 - \dfrac{1}{2}k{\left( { \pm \dfrac{{{A_2}}}{2}} \right)^2} = \dfrac{3}{4}.\dfrac{1}{2}k{A_2}^2\\ \Rightarrow \dfrac{{{W_{d2}}}}{W} = \dfrac{{\dfrac{3}{4}.\dfrac{1}{2}k{A_2}^2}}{{\dfrac{1}{2}k{A_1}^2}} = \dfrac{3}{4}\dfrac{{{A_2}^2}}{{{A_1}^2}} = \dfrac{3}{4}\dfrac{{{{\left( {4\sqrt 3 } \right)}^2}}}{{{4^2}}} = \dfrac{9}{4} \Rightarrow {W_{d2}} = \dfrac{{9W}}{4}\end{array}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com