Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có hai điện tích điểm \({q_1} = q = {4.10^{ - 9}}C\) và \({q_2} = 4q = {16.10^{ - 9}}C\) đặt cách nhau

Câu hỏi số 412676:
Vận dụng cao

Có hai điện tích điểm \({q_1} = q = {4.10^{ - 9}}C\) và \({q_2} = 4q = {16.10^{ - 9}}C\) đặt cách nhau một khoảng r = 1cm trong không khí. Cần đặt điện tích thứ ba \({q_0}\) ở đâu, có dấu và độ lớn như thế nào để hệ ba điện tích trên nằm cân bằng? Biết hai điện tích \({q_1}\) và \({q_2}\) để tự do.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:412676
Phương pháp giải

Để \({q_0}\) cân bằng thì: \(\overrightarrow {{F_{10}}}  + \overrightarrow {{F_{20}}}  = 0 \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {{F_{10}}} \, \uparrow  \downarrow \,\overrightarrow {{F_{20}}} \,\,\,\left( 1 \right)\\{F_{10}} = {F_{20}}\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

Giải (1) \( \Rightarrow \) ba điện tích thẳng hàng

+ Nếu \({q_1};{q_2}\) cùng dấu \( \Rightarrow \) q0 nằm trong q1 và q2.

(Không phụ thuộc vào dấu của q0)

+ Nếu \({q_1};{q_2}\) trái dấu \( \Rightarrow \) q0 nằm ngoài q1 và q2 và gần điện tích có độ lớn nhỏ hơn.

(Không phụ thuộc vào dấu của q0)

Giải chi tiết

\({q_1}\) đặt tại A, \({q_2}\) đặt tại B, \({q_0}\) tại C

- Gọi lực do \({q_1}\) tác dụng lên \({q_0}\) là \({F_{10}}\);   lực do \({q_2}\) tác dụng lên \({q_0}\) là \({F_{20}}\)

- Để \({q_0}\) nằm cân bằng: \(\overrightarrow {{F_{10}}}  =  - \overrightarrow {{F_{20}}} \)

- Do \({q_1},{q_2}\) cùng dấu \( \Rightarrow {q_0}\) nằm trong khoảng \(AB\)

 

Lại có : \({F_{10}} = {F_{20}} \Leftrightarrow k\dfrac{{\left| {{q_1}{q_0}} \right|}}{{A{C^2}}} = k\dfrac{{\left| {{q_2}{q_0}} \right|}}{{B{C^2}}}\)

\( \Rightarrow \dfrac{{A{C^2}}}{{B{C^2}}} = \left| {\dfrac{{{q_1}}}{{{q_2}}}} \right| = \dfrac{1}{4} \Rightarrow BC = 2AC\,\,\,\left( 1 \right)\)

Lại có : \(AC + BC = 1cm\) (2)

Từ (1) và (2) ta suy ra : \(\left\{ \begin{array}{l}AC = \dfrac{1}{3}cm\\BC = \dfrac{2}{3}cm\end{array} \right.\)

- Gọi \(\overrightarrow {{F_{01}}} ,\overrightarrow {{F_{21}}} \) lần lượt là lực do \({q_0},{q_2}\) tác dụng lên \({q_1}\)

+ Điều kiện cân bằng của \({q_1}\):

\(\overrightarrow {{F_{01}}}  + \overrightarrow {{F_{21}}}  = \overrightarrow 0 \) \( \Rightarrow \overrightarrow {{F_{01}}}  =  - \overrightarrow {{F_{21}}} \,\,\,\left( 3 \right)\)

\( \Rightarrow \overrightarrow {{F_{01}}} \) ngược chiều \(\overrightarrow {{F_{21}}} \)

Ta suy ra, \({F_{01}}\) là lực hút \( \Rightarrow {q_0} < 0\)

+ Lại có: \({F_{01}} = {F_{21}} \Leftrightarrow k\dfrac{{\left| {{q_0}{q_1}} \right|}}{{A{C^2}}} = k\dfrac{{\left| {{q_2}{q_1}} \right|}}{{A{B^2}}}\)

\( \Rightarrow \left| {{q_0}} \right| = \left| {{q_2}} \right|\dfrac{{A{C^2}}}{{A{B^2}}} = {16.10^{ - 9}}\dfrac{{{{\left( {\dfrac{1}{3}} \right)}^2}}}{{{1^2}}} = \dfrac{{16}}{9}{.10^{ - 9}}C\)

\( \Rightarrow {q_0} =  - \dfrac{{16}}{9}{.10^{ - 9}}C\)  (do lập luận suy ra \({q_0} < 0\) ở trên) (4)

- Gọi \(\overrightarrow {{F_{02}}} ,\overrightarrow {{F_{12}}} \) lần lượt là lực do \({q_0},{q_1}\) tác dụng lên \({q_2}\)

+ Điều kiện cân bằng của \({q_2}\): \(\overrightarrow {{F_{02}}}  + \overrightarrow {{F_{12}}}  = \overrightarrow 0 \) \( \Rightarrow \overrightarrow {{F_{02}}}  =  - \overrightarrow {{F_{12}}} \)

\( \Rightarrow \overrightarrow {{F_{02}}} \) ngược chiều \(\overrightarrow {{F_{12}}} \) \( \Rightarrow {F_{02}}\) là lực hút \( \Rightarrow {q_0} < 0\)

Lại có: \({F_{02}} = {F_{12}} \Leftrightarrow k\dfrac{{\left| {{q_0}{q_2}} \right|}}{{C{B^2}}} = k\dfrac{{\left| {{q_1}{q_2}} \right|}}{{A{B^2}}}\)

\( \Rightarrow \left| {{q_0}} \right| = \left| {{q_1}} \right|\dfrac{{C{B^2}}}{{A{B^2}}} = {4.10^{ - 9}}\dfrac{{{{\left( {\dfrac{2}{3}} \right)}^2}}}{{{1^2}}} = \dfrac{{16}}{9}{.10^{ - 9}}C\)

\( \Rightarrow {q_0} =  - \dfrac{{16}}{9}{.10^{ - 9}}C\)  (do lập luận suy ra \({q_0} < 0\) ở trên) (5)

Vậy với \({q_0} =  - \dfrac{{16}}{9}{.10^{ - 9}}C\) thì hệ 3 điện tích cân bằng.

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com