Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng \(\left( P \right):x - y + 2z = 0\) và các

Câu hỏi số 412926:
Vận dụng

Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng \(\left( P \right):x - y + 2z = 0\) và các điểm \(A\left( {1;2; - 1} \right)\), \(B\left( {3;1; - 2} \right),\)\(C\left( {1; - 2;1} \right)\). Tìm điểm \(M \in \left( P \right)\) sao cho \(M{A^2} - M{B^2} - M{C^2}\) lớn nhất

Đáp án đúng là: C

Quảng cáo

Câu hỏi:412926
Phương pháp giải

- Gọi điểm \(M\left( {x;y;z} \right)\)

- Thay vào biểu thức đã cho tìm GTLN.

Giải chi tiết

Gọi điểm \(M\left( {x;y;z} \right)\) ta có:

\(\begin{array}{l}A{M^2} = {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2}\\\,\,\,\,\,\,\,\,\,\,\, = {x^2} - 2x + 1 + {y^2} - 4y + 4 + {z^2} + 2z + 1\\\,\,\,\,\,\,\,\,\,\,\, = {x^2} + {y^2} + {z^2} - 2x - 4y + 2z + 6\\B{M^2} = {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2}\\\,\,\,\,\,\,\,\,\,\,\, = {x^2} - 6x + 9 + {y^2} - 2y + 1 + {z^2} + 4z + 4\\\,\,\,\,\,\,\,\,\,\,\, = {x^2} + {y^2} + {z^2} - 6x - 2y + 4z + 14\\C{M^2} = {\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2}\\\,\,\,\,\,\,\,\,\,\,\, = {x^2} - 2x + 1 + {y^2} + 4y + 4 + {z^2} - 2z + 1\\\,\,\,\,\,\,\,\,\,\,\, = {x^2} + {y^2} + {z^2} - 2x + 4y - 2z + 6\\ \Rightarrow M{A^2} - M{B^2} - M{C^2}\\ = \left( {{x^2} + {y^2} + {z^2} - 2x - 4y + 2z + 6} \right)\\ - \left( {{x^2} + {y^2} + {z^2} - 6x - 2y + 4z + 14} \right)\\ - \left( {{x^2} + {y^2} + {z^2} - 2x + 4y - 2z + 6} \right)\\ =  - {x^2} - {y^2} - {z^2} + 6x - 6y - 14\,\,\left( * \right)\end{array}\)

Mà \(M \in \left( P \right):x - y + 2z = 0\) nên \(y = x + 2z\), thay vào (*) ta được:

\(\begin{array}{l}\,\,\,\,\,M{A^2} - M{B^2} - M{C^2}\\ =  - {x^2} - {\left( {x + 2z} \right)^2} - {z^2} + 6x - 6\left( {x + 2z} \right) - 14\\ =  - {x^2} - {x^2} - 4xz - 4{z^2} - {z^2} + 6x - 6x - 12z - 14\\ =  - 2{x^2} - 4xz - 5{z^2} - 12z - 14\\ =  - 2{x^2} - 4xz - 2{z^2} - 3{z^2} - 12z - 12 - 2\\ =  - 2\left( {{x^2} + 2xz + {z^2}} \right) - 3\left( {{z^2} + 4z + 4} \right) - 2\\ =  - 2{\left( {x + z} \right)^2} - 3{\left( {z + 2} \right)^2} - 2 \le  - 2.0 - 3.0 - 2 =  - 2\\ \Rightarrow M{A^2} - M{B^2} - M{C^2} \le  - 2\end{array}\)

Dấu “=” xảy ra khi \(\left\{ \begin{array}{l}x + z = 0\\z + 2 = 0\\y = x + 2z\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}z =  - 2\\x = 2\\y =  - 2\end{array} \right.\)\( \Rightarrow M\left( {2; - 2; - 2} \right)\)

Chú ý khi giải

Có thể thay trực tiếp tọa độ các điểm M đã cho vào và tìm GTLN của biểu thức đã cho. Chú ý kiểm tra điều kiện \(M \in \left( P \right)\) trước khi thay.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com