Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trên mặt phẳng tọa độ, tập hợp các điểm biểu diễn số phức \(z\) thỏa mãn \(\left| {{z^2}}

Câu hỏi số 412935:
Vận dụng

Trên mặt phẳng tọa độ, tập hợp các điểm biểu diễn số phức \(z\) thỏa mãn \(\left| {{z^2}} \right| + 3z + 3\overline z  \le 0\) có bao nhiêu điểm có tọa độ nguyên?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:412935
Phương pháp giải

- Đặt \(z = a + bi\) thay vào điều kiện bài cho tìm mối quan hệ của a, b.

- Từ đó suy ra các bộ số nguyên (a;b) thỏa mãn.

Giải chi tiết

Đặt \(z = a + bi\left( {a,b \in \mathbb{R}} \right)\) ta có:

\(\begin{array}{l}\left| {{z^2}} \right| + 3z + 3\overline z  \le 0\\ \Rightarrow {\left| z \right|^2} + 3\left( {z + \overline z } \right) \le 0\\ \Leftrightarrow {\left( {\sqrt {{a^2} + {b^2}} } \right)^2} + 3\left( {a + bi + a - bi} \right) \le 0\\ \Leftrightarrow {a^2} + {b^2} + 3.2a \le 0\\ \Leftrightarrow {a^2} + {b^2} + 6a \le 0\\ \Leftrightarrow {a^2} + 6a + 9 + {b^2} \le 9\\ \Leftrightarrow {\left( {a + 3} \right)^2} + {b^2} \le 9\end{array}\)

\( \Rightarrow {b^2} \le 9 \Leftrightarrow  - 3 \le b \le 3\)

Vì \(b \in \mathbb{Z}\) nên \(b \in \left\{ { - 3; - 2; - 1;0;1;2;3} \right\}\)

+) Với \(b =  \pm 3\) thì \({\left( {a + 3} \right)^2} = 0 \Leftrightarrow a =  - 3\) nên ta có hai số phức \( - 3 \pm 3i\).

+) Với \(b =  \pm 2\) thì

\({\left( {a + 3} \right)^2} + 4 \le 9 \Leftrightarrow {\left( {a + 3} \right)^2} \le 5\)

\(\begin{array}{l} \Leftrightarrow  - \sqrt 5  \le a + 3 \le \sqrt 5 \\ \Leftrightarrow  - \sqrt 5  - 3 \le a \le \sqrt 5  - 3\\ \Rightarrow a \in \left\{ { - 5; - 4; - 3; - 2; - 1} \right\}\end{array}\)

Do đó trường hợp này có 10 số phức thỏa mãn.

+) Với \(b =  \pm 1\) thì

\({\left( {a + 3} \right)^2} + 1 \le 9 \Leftrightarrow {\left( {a + 3} \right)^2} \le 8\)

\(\begin{array}{l} \Leftrightarrow  - 2\sqrt 2  \le a + 3 \le 2\sqrt 2 \\ \Leftrightarrow  - 2\sqrt 2  - 3 \le a \le 2\sqrt 2  - 3\\ \Rightarrow a \in \left\{ { - 5; - 4; - 3; - 2; - 1} \right\}\end{array}\)

Do đó trường hợp này có 10 số phức thỏa mãn.

+) Với \(b = 0\) thì \({\left( {a + 3} \right)^2} = 9 \Leftrightarrow \left[ \begin{array}{l}a = 0\\a =  - 6\end{array} \right.\) nên ta có hai số phức thỏa mãn là \(0\) và \( - 6\).

Vậy có tất cả \(2 + 10 + 10 + 2 = 24\) số phức thỏa mãn bài toán.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com