Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Số phức \(z = a + bi\,\,\left( {a,\,\,b \in \mathbb{R}} \right)\) thỏa mãn \(2z + 1 = \overline z ,\) có \(a +

Câu hỏi số 413372:
Thông hiểu

Số phức \(z = a + bi\,\,\left( {a,\,\,b \in \mathbb{R}} \right)\) thỏa mãn \(2z + 1 = \overline z ,\) có \(a + b\) bằng:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:413372
Phương pháp giải

Cho số phức \(z = a + bi\,\,\left( {a,\,\,b \in \mathbb{R}} \right)\) \( \Rightarrow \) Số phức liên hợp của số phức \(z\) là: \(\overline z  = a - bi.\)

Cho \({z_1} = {a_1} + {b_1}i;\,\,{z_2} = {a_2} + {b_2}i\,\,\,\left( {{a_1},\,\,{a_2},\,\,{b_1},\,\,{b_2} \in \mathbb{R}} \right).\) Ta có: \({z_1} = {z_2} \Leftrightarrow \left\{ \begin{array}{l}{a_1} = {a_2}\\{b_1} = {b_2}\end{array} \right..\) 

Giải chi tiết

Ta có số phức liên hợp của số phức \(z\) là: \(\overline z  = a - bi.\)

\(\begin{array}{l} \Rightarrow 2z + 1 = \overline z \\ \Leftrightarrow 2\left( {a + bi} \right) + 1 = a - bi\\ \Leftrightarrow 2a + 1 + 2bi = a - bi\\ \Leftrightarrow \left\{ \begin{array}{l}2a + 1 = a\\2b =  - b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 1\\b = 0\end{array} \right.\\ \Rightarrow a + b =  - 1 + 0 =  - 1.\end{array}\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com