Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có bao nhiêu giá trị nguyên của \(m\) để hàm số \(y = \left| {{x^3} - m{x^2} + 12x + 2m} \right|\)luôn

Câu hỏi số 413428:
Vận dụng

Có bao nhiêu giá trị nguyên của \(m\) để hàm số \(y = \left| {{x^3} - m{x^2} + 12x + 2m} \right|\)luôn đồng biến trên khoảng \(\left( {1; + \infty } \right)\)?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:413428
Giải chi tiết

Ta có: \(y' = \dfrac{{\left( {{x^3} - m{x^2} + 12x + 2m} \right).\left( {3{x^2} - 2mx + 12} \right)}}{{\left| {3{x^3} - m{x^2} + 12x + 2m} \right|}}\).

Để hàm số đồng biến trên \(\left( {1; + \infty } \right)\) thì \(y' \ge 0\,\,\forall x \in \left( {1; + \infty } \right)\).

\(\begin{array}{l} \Leftrightarrow \dfrac{{\left( {{x^3} - m{x^2} + 12x + 2m} \right).\left( {3{x^2} - 2mx + 12} \right)}}{{\left| {3{x^3} - m{x^2} + 12x + 2m} \right|}} \ge 0\,\,\forall x \in \left( {1; + \infty } \right)\\ \Leftrightarrow \left( {{x^3} - m{x^2} + 12x + 2m} \right).\left( {3{x^2} - 2mx + 12} \right) \ge 0\,\,\forall x \in \left( {1; + \infty } \right)\end{array}\)

TH1: \(\left\{ \begin{array}{l}{x^3} - m{x^2} + 12x + 2m \ge 0\,\,\forall x \in \left( {1; + \infty } \right)\,\,\,\,\,\,\,\left( 1 \right)\\3{x^2} - 2mx + 12 \ge 0\,\,\forall x \in \left( {1; + \infty } \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

\(\begin{array}{l}\left( 2 \right) \Leftrightarrow 2mx \le 3{x^2} + 12\,\,\forall x \in \left( {1; + \infty } \right)\\\,\,\,\,\,\,\,\, \Leftrightarrow m \le \dfrac{{3{x^2} + 12}}{{2x}} = g\left( x \right)\,\,\,\forall x \in \left( {1; + \infty } \right)\\\,\,\,\,\,\,\,\, \Leftrightarrow m \le \mathop {\min }\limits_{\left[ {1; + \infty } \right)} g\left( x \right)\end{array}\).

Xét hàm số \(g\left( x \right) = \dfrac{{3{x^2} + 12}}{{2x}}\) với \(x \in \left( {1; + \infty } \right)\) ta có \(g'\left( x \right) = \dfrac{{6x.2x - 2\left( {3{x^2} + 12} \right)}}{{4{x^2}}} = \dfrac{{6{x^2} - 24}}{{4{x^2}}}\).

\(g'\left( x \right) = 0 \Leftrightarrow 6{x^2} - 24 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\,\,\,\,\,\,\left( {tm} \right)\\x =  - 2\,\,\left( {ktm} \right)\end{array} \right.\).

BBT:

Từ BBT ta suy ra \(m \le 6\).

Với \(m \le 6\), ta có hàm số \(y = f\left( x \right) = {x^3} - m{x^2} + 12x + 2m\) có \(y' = 3{x^2} - 2mx + 12 \ge 0\,\,\forall x \in \left( {1; + \infty } \right)\), do đó hàm số \(y = f\left( x \right) = {x^3} - m{x^2} + 12x + 2m\) đồng biến trên \(\left( {1; + \infty } \right)\), suy ra \(\mathop {\min }\limits_{\left[ {1; + \infty } \right)} f\left( x \right) = f\left( 1 \right) = 1 - m + 12 + 2m = m + 13\).

Ta có: \(\left( 1 \right) \Leftrightarrow \mathop {\min }\limits_{\left[ {1; + \infty } \right)} f\left( x \right) \ge 0\), suy ra \(m + 13 \ge 0 \Leftrightarrow m \ge  - 13\).

Kết hợp lại ta có \( - 13 \le m \le 6\).

TH2: \(\left\{ \begin{array}{l}{x^3} - m{x^2} + 12x + 2m \le 0\,\,\forall x \in \left( {1; + \infty } \right)\,\,\,\,\,\,\,\left( 3 \right)\\3{x^2} - 2mx + 12 \le 0\,\,\forall x \in \left( {1; + \infty } \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\end{array} \right.\)

Dựa vào BBT hàm số \(g\left( x \right)\) ở TH1 ta suy ra bất phương trình (3) vô nghiệm, do đó TH này không thỏa mãn.

Vậy \( - 13 \le m \le 6\), mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 13; - 12;...;5;6} \right\}\) nên có 20 giá trị của \(m\) thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com