Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện đều ABCD có cạnh bằng 4. Hình trụ \(\left( T \right)\) có một đường tròn đáy là

Câu hỏi số 413441:
Vận dụng

Cho tứ diện đều ABCD có cạnh bằng 4. Hình trụ \(\left( T \right)\) có một đường tròn đáy là đường tròn nội tiếp tam giác BCD và chiều cao bằng chiều cao của tứ diện ABCD. Diện tích xung quanh của \(\left( T \right)\) bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:413441
Phương pháp giải

- Tìm bán kính đáy của hình trụ là bán kính đường tròn nội tiếp tam giác BCD.

- Tìm chiều cao hình trụ chính là chiều cao hình chóp ABCD.

- Áp dụng công thức tính diện tích xung quanh hình trụ: \(S = 2\pi Rh\)

Giải chi tiết

Tam giác BCD là tam giác đều cạnh 4\( \Rightarrow \left\{ \begin{array}{l}{S_{BCD}} = 4\sqrt 3 \\p = 12\end{array} \right.\)

 Áp dụng cồn thức tính bán kính đường tròn nội tiếp ta có:\(R = \frac{{2S}}{p} = \frac{{2\sqrt 3 }}{3}\)

Gọi O là tâm của tam giác đều BCD

\( \Rightarrow AO \bot \left( {BCD} \right) \Rightarrow \Delta ABO\) vuông tại O có \(BO = \frac{{4\sqrt 3 }}{3};AB = 4 \Rightarrow AO = h = \frac{{4\sqrt 6 }}{3}\)

Khi đó diện tích xung quanh hình trụ có \(h = \frac{{4\sqrt 6 }}{3};R = \frac{{2\sqrt 3 }}{3}\) là \(S = 2\pi Rh = \frac{{16\sqrt 2 \pi }}{3}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com