Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Có bao nhiêu số nguyên \(m\) để hàm số \(f\left( x \right) = {x^4} - 2\left( {{m^2} - 3m} \right){x^2} +

Câu hỏi số 416828:
Vận dụng

Có bao nhiêu số nguyên \(m\) để hàm số \(f\left( x \right) = {x^4} - 2\left( {{m^2} - 3m} \right){x^2} + 3\)đồng biến trên khoảng \(\left( {2; + \infty } \right)?\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:416828
Phương pháp giải

- Tính đạo hàm của hàm số.

- Chia các trường hợp của \(m\), xác định nghiệm của phương trình \(f'\left( x \right) = 0\).

- Lập BBT của hàm số, tìm điều kiện để \(f'\left( x \right) > 0\,\,\forall x \in \left( {2; + \infty } \right)\).

Giải chi tiết

Ta có \(f'\left( x \right) = 4{x^3} - 4\left( {{m^2} - 3m} \right)x\).

\(\begin{array}{l}f'\left( x \right) = 0 \Leftrightarrow 4x\left[ {{x^2} - \left( {{m^2} - 3m} \right)} \right] = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = {m^2} - 3m\end{array} \right.\end{array}\)

TH1: \({m^2} - 3m \le 0 \Leftrightarrow 0 \le m \le 3\), khi đó ta có \(f'\left( x \right) > 0\,\,\forall x > 0\), do đó hàm số đồng biến trên \(\left( {0; + \infty } \right)\), thỏa mãn điều kiện hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right).\)

TH2: \({m^2} - 3m > 0 \Leftrightarrow \left[ \begin{array}{l}m > 3\\m < 0\end{array} \right.\,\,\left( * \right)\), khi đó ta có \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \sqrt {{m^2} - 3m}  = {x_1}\\x =  - \sqrt {{m^2} - 3m}  = {x_2}\end{array} \right.\).

Ta có BBT:

Dựa vào BBT ta thấy: Để hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\) thì \({x_1} \le 2\).

\( \Leftrightarrow \sqrt {{m^2} - 3m}  \le 2 \Leftrightarrow {m^2} - 3m \le 4 \Leftrightarrow  - 1 \le m \le 4\).

Kết hợp điều kiện (*) \( \Rightarrow m \in \left[ { - 1;0} \right) \cup \left( {3;4} \right]\).

Kết hợp 2 trường hợp \( \Rightarrow m \in \left[ { - 1;4} \right]\).  Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 1;0;1;2;3;4} \right\}\).

Vậy có 6 giá trị của \(m\) thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com