Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(A,\,\,M\) là trung tâm điểm \(BC,\) hình
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(A,\,\,M\) là trung tâm điểm \(BC,\) hình chiếu vuông góc của \(S\) lên mặt phẳng \(\left( {ABC} \right)\) trùng với trung điểm của \(AM.\) Cho biết \(AB = a,\,\,AC = a\sqrt 3 \)và mặt phẳng \(\left( {SAB} \right)\) tạo với mặt phẳng \(\left( {ABC} \right)\) một góc \({60^0}.\) Tính khoảng cách giữa hai đường thẳng \(SA\) và \(BC.\)
Đáp án đúng là: D
Quảng cáo
- Dựng hình bình hành \(ABCD\), chứng minh \(d\left( {SA;BC} \right) = d\left( {BC;\left( {SAD} \right)} \right) = d\left( {M;\left( {SAD} \right)} \right) = 2d\left( {H;\left( {SAD} \right)} \right)\) với \(H\) là trung điểm của \(AM\).
- Trong \(\left( {ABCD} \right)\) kẻ \(HK \bot AD\,\,\left( {K \in AD} \right)\), trong \(\left( {SHK} \right)\) kẻ \(HI \bot SK\,\,\left( {I \in SK} \right)\), chứng minh \(HI \bot \left( {SAD} \right)\).
- Gọi \(N,\,\,P\) lần lượt là trung điểm của \(AB,\,\,AN\). Xác định góc giữa \(\left( {SAB} \right)\) và \(\left( {ABC} \right)\) là góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.
- Sử dụng tính chất đường trung bình của tam giác và tỉ số lượng giác của góc nhọn trong tam giác vuông, tính chiều cao \(SH\).
- Nhận xét , từ đó tính \(HK\).
- Áp dụng hệ thức lượng trong tam giác vuông \(SHK\) tính \(HI\).
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













